Professor uses diamond to produce graphene quantum dots and nano-ribbons of controlled structure

Vikas Berry, William H. Honstead professor of chemical engineering, has developed a novel process that uses a diamond knife to cleave graphite into graphite nanoblocks, which are precursors for graphene quantum dots. These nanoblocks are then exfoliated to produce ultrasmall sheets of carbon atoms of controlled shape and size.

By controlling the size and shape, the researchers can control graphene's properties over a wide range for varied applications, such as solar cells, electronics, optical dyes, biomarkers, composites and particulate systems. Their work has been published in Nature Communications and supports the university's vision to become a top 50 public research university by 2025. The article is available online.

“The process produces large quantities of graphene quantum dots of controlled shape and size and we have conducted studies on their structural and electrical properties,” Berry said.

While other researchers have been able to make quantum dots, Berry's research team can make quantum dots with a controlled structure in large quantities, which may allow these optically active quantum dots to be used in solar cell and other optoelectronic applications.

“There will be a wide range of applications of these quantum dots,” Berry said. “We expect that the field of graphene quantum dots will evolve as a result of this work since this new material has a great potential in several nanotechnologies.”

It has been know that because of the edge states and quantum confinement, the shape and size of graphene quantum dots dictate their electrical, optical, magnetic and chemical properties. This work also shows proof of the opening of a band-gap in graphene nanoribbon films with a reduction in width. Further, Berry's team shows through high-resolution transmission electron micrographs and simulations that the edges of the produces structures are straight and relatively smooth.

Other collaborators on this work include Zhiping Xu from Tsinghua University in China and David Moore from the University of Kansas. Xu conducted the molecular dynamics simulations. The co-authors from Kansas State University include Nihar Mohanty, 2011 doctoral graduate; T. S. Sreeprasad, postdoctoral fellow; Alfredo A. Rodriguez, 2012 graduate; and Ashvin Nagaraja, 2009 graduate.

The project was funded by the National Science Foundation and the Office of Naval Research.

Berry earned his bachelor's degree in chemical engineering from the Indian Institute of Technology in Delhi, India, in 1999. He received his master's degree in chemical and petroleum engineering from the University of Kansas in 2003, followed by his doctorate in chemical engineering from Virginia Polytechnic Institute and State University in 2006.

Media Contact

Vikas Berry EurekAlert!

More Information:

http://www.k-state.edu

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors