How can we use neutrinos to probe dark matter in the sun?

The existence of Dark Matter particles in the Sun's interior seems inevitable, despite dark matter never having been observed (there or elsewhere), despite intensive ongoing searches. Once gravitationally captured by the Sun, these particles tend to accumulate in its core.

In a paper to be published in the scientific journal ” Science”, Dr. Ilidio Lopes and Professor Joseph Silk propose that the presence of dark matter in the Sun's interior causes a significant drop in its central temperature. Their calculations have shown that, in some dark matter scenarios, an isothermal solar core (constant temperature) is formed. The authors suggest that the neutrino detectors will be able to measure these types of effects.

In another paper published in “The Astrophysical Journal Letters”, the same authors suggest that, through the detection of gravity waves produced in the Sun's interior (identical to internal sea waves), Helioseismology can also independently confirm the presence of Dark Matter in the Sun.

Current detectors of solar neutrinos, Borexino and “Sudbury Neutrino Observatory” (SNO), as well as those currently being built, will be able to measure with precision the temperature in the Sun's interior. In particular, SNO is a Canadian experiment which also has European and American support. Portugal participates in the SNO and SNO+ experiments through the “Laboratório de Instrumentação e Partículas (LIP)”.

The development of Helioseismology has been fundamental for increasing our scientific understanding of the Sun. The experiment Global Oscillation Low-degree Modes (GOLF) detector on the SoHO satellite seems to have identified gravity waves in the Sun for the first time. Future experiments in Helioseismology will be able to confirm these results.

Media Contact

Ilidio Lopes EurekAlert!

More Information:

http://www.uevora.pt

All latest news from the category: Physics and Astronomy

This area deals with the fundamental laws and building blocks of nature and how they interact, the properties and the behavior of matter, and research into space and time and their structures.

innovations-report provides in-depth reports and articles on subjects such as astrophysics, laser technologies, nuclear, quantum, particle and solid-state physics, nanotechnologies, planetary research and findings (Mars, Venus) and developments related to the Hubble Telescope.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors