A new wrinkle in thin film science

A remarkably simple experiment devised by scientists yields important information about the mechanical properties of thin films–nanoscopically thin layers of material that are deposited onto a metal, ceramic or semiconductor base.

The research results, funded by the National Science Foundation and performed at the University of Massachusetts at Amherst Materials Research Science and Engineering Center, appears in the August 3, 2007, issue of Science.

The findings impact a broad range of scientific disciplines and applications, from cosmetics to coatings, to micro- and nanoelectronics. Understanding the mechanical properties of thin films is essential to their performance and optimization.

Until now, determining the mechanical properties of these thin films was either an expensive and time-consuming endeavor, requiring powerful microscopes to view the films, or scientists examined composite structures and made uncertain assumptions. This new research will give scientists a simple way to access the material properties of most thin films.

“As we delve more into the nanotechnology, it becomes increasingly important to know if the material properties of ultrathin films differ from their properties in the bulk,” said Thomas Russell, a program director in the Polymer Science and Engineering Department at the University of Massachusetts in Amherst. “Everyday we see examples where a material's dimensions can change its properties. Aluminum foil is flexible, whereas a bar of aluminum is not. But what happens when a film's thickness approaches molecular dimensions” These experiments give us a simple, inexpensive way to measure mechanical properties of films that are only tens of nanometers thick.”

Russell and his colleagues use a low-power optical microscope to observe what happens when they place a tiny drop of water on thin film as it floats in a Petri dish of water. The “capillary tension” of the drop of water produces a starburst of wrinkles in the film. The number and length of the wrinkles are determined by the elasticity and thickness of the film.

In some of the materials studied, the wrinkles in the ultrathin polymer films vanished with time, unlike the skin of a dried fruit or the crumpled hood of your car after an accident. This vanishing provides insight into the relaxation process of an ultrathin film by yielding information on the way polymer chains move in the highly confined geometry.

Media Contact

Diane Banegas EurekAlert!

More Information:

http://www.nsf.gov/mynsf/

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors