Researcher discovers new materials

A research team led by Carnegie Mellon University Materials Science and Biomedical Engineering Professor Prashant Kumta has discovered a nanocrystalline material that is cheaper, more stable and produces a higher quality energy storage capacity for use in a variety of industrial and portable consumer electronic products. Kumta said the discovery, published this summer in Advanced Materials Journal, has important implications for increasing the longevity of rechargeable car batteries, fuel cells and other battery-operated electronic devices.

“We have found that synthesis of nanostructured vanadium nitride and controlled oxidation of the surface at the nanoscale is key to creating the next generation of supercapacitors commonly used in everything from cars, camcorders and lawn mowers to industrial backup power systems at hospitals and airports,” Kumta said.

Dramatic growth in computer use is making consumers require more from their electronic devices, which creates increased demand for a better power source than existing battery technology. Today's batteries are also powered by ruthenium, which sells for $100 per gram, compared with the more economical vanadium nitride at $50 a gram.

“Not only is vanadium nitride less expensive to use, it can also store energy much longer, giving users a greater burst of juice for the old finicky car battery or the hospital's backup power system,” Kumta said.

As people use cell phones to do more than just communicate — as they watch movies, listen to music and process family photos — they need more power. And this new nanocrystalline will solve some of those challenges, according to Kumta.

Media Contact

Chriss Swaney EurekAlert!

More Information:

http://www.cmu.edu

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors