New method for modifying products containing wood fibres developed in Finland

VTT Technical Research Centre of Finland has developed a method that opens up new opportunities for the use of lignin-containing wood fibres and other natural fibres as well as fibre products. The method offers an innovative, environmentally friendly approach to customize or even to introduce completely new properties – such as moisture repellency or electric conductivity – to fibre-containing products.

The new chemo-enzymatic modification method of fibre materials enables manufacturers to better tailor the fibre properties according to the desired end product. The method can be used to enhance the original properties or even to introduce new properties to lignin-containing fibre materials. To achieve the desired modification, suitable chemical compounds are attached to the material in a chemical or enzymatic process.

Wood fibre products are moisture absorbent by nature. The new method makes it possible to control the moisture resistance properties of lignin-containing fibre materials even to a degree where they become water-resistant. This opens up new opportunities for the use of wood fibres e.g. in the packaging industry.

Manufacturers in branches of industry such as the biocomposites, building and speciality paper and packaging industries, utilising materials containing lignocellulosic fibres in composite structures, can benefit from VTT’s method for developing various product properties. For example, the process can be used to make antistatic filter papers.

VTT’s chemo-enzymatic method differs from the available chemical modifications in its surface targeted and gentle action. It can also easily be integrated in existing manufacturing and finishing processes of fibres and fibre materials.

”Chemo-enzymatic fibre modification creates new opportunities for the processing of existing fibre products and for manufacturing innovative, tailored fibre products in the paper and packaging process. In the future, tailored wood fibres may present a viable alternative for example to synthetic fibres in various industrial composites,” says Anna Suurnäkki, Senior Research Scientist at VTT.

Further information:

VTT
Senior Research Scientist
Anna Suurnäkki
Tel. +358 20 722 7178
anna.suurnakki@vtt.fi

Further information on VTT:
Senior Vice President
Olli Ernvall
Tel. +358 20 722 6747
olli.ernvall@vtt.fi
VTT Technical Research Centre of Finland is the biggest contract research organization in Northern Europe. VTT provides high-end technology solutions and innovation services. From its wide knowledge base, VTT can combine different technologies, create new innovations and a substantial range of world-class technologies and applied research services, thus improving its clients' competitiveness and competence. Through its international scientific and technology network, VTT can produce information, upgrade technology knowledge and create business intelligence and value added to its stakeholders.

Media Contact

Anna Suurnäkki VTT

More Information:

http://www.vtt.fi/?lang=en

All latest news from the category: Materials Sciences

Materials management deals with the research, development, manufacturing and processing of raw and industrial materials. Key aspects here are biological and medical issues, which play an increasingly important role in this field.

innovations-report offers in-depth articles related to the development and application of materials and the structure and properties of new materials.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors