Waking up dormant HIV

But, a chemical called suberoylanilide hydroxamic acid (SAHA), recently approved as a leukemia drug, has now been shown to 'turn on' latent HIV, making it an attractive candidate to weed out the hidden virus that HAART misses.

Matija Peterlin at UCSF and colleagues had previously identified another chemical called HMBA that could activate latent HIV, but the risk of several toxic side effects made HMBA clinically non-viable. However, the chemically similar SAHA had received FDA approval, making it a potentially safer alternate.

So, the researchers examined whether SAHA had any effect on HIV latency. They found that SAHA could indeed stimulate latent HIV to begin replicating, which exposes the infected cell to HAART drugs. SAHA could activate HIV in both laboratory cells as well as from blood samples taken from HIV patients on antiretroviral therapy. Importantly, this successful activation was achieved using clinical doses of SAHA, suggesting toxicity will not be a problem.

Media Contact

Nick Zagorski EurekAlert!

More Information:

http://www.asbmb.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors