Superbug's CPU revealed

McMaster University researchers have discovered a central controller or processing unit (CPU) of a superbug's weaponry.

An article on the breakthrough appears in the high-impact journal Science today.

The team from the Michael G. DeGroote Institute for Infectious Disease Research has revealed that a small chemical, made by the superbug Staphylococcus aureus and its drug-resistant forms, determines this disease's strength and ability to infect.

The bacteria is the cause for a wide range of difficult-to-treat human infectious diseases such as pneumonia, toxic-shock syndrome and flesh-eating diseases. It has become known as the superbug as it has become increasingly resistant to antibiotics and especially troublesome in hospitals.

The discovery will provide new options for fight back and disable the virulent bacteria.

“We've found that when these small chemicals in the bacteria are shut down, the bacteria is rendered non-functional and non-infectious,” said Nathan Magarvey, principal investigator for the study and an assistant professor of biochemistry and biomedical sciences at McMaster. “We're now set on hacking into this pathogen and making its system crash.”

To identify these “pathogen small molecule CPUs”, the researchers used cutting-edge chemical mining tools to reveal the molecular wiring associated with their formation. Then, to uncover its function, the McMaster scientists shut off its synthesis, showing that the deadly pathogens had been tamed and unable to burst open red blood cells.

The McMaster team also collaborated with the University of Western Ontario and the University of Nebraska to further delve into how this “small molecule CPU” works and functions to engage Staphylococcus aureus in its destructive and harmful behaviours.

Media Contact

Veronica McGuire EurekAlert!

More Information:

http://www.mcmaster.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors