Small Evolutionary Shifts Make Big Impacts – Like Developing Night Vision

In the developing fetus, cell growth follows a very specific schedule. In the eye’s retina, for example, cones – which help distinguish color during the day – develop before the more light-sensitive rods – which are needed for night vision.

But minor differences in the timing of cell proliferation can explain the large differences found in the eyes of two species – owl monkeys and capuchin monkeys – that evolved from a common ancestor.

Researchers from Cornell, St. Jude’s Children’s Research Hospital in Tennessee and the Federal University of Para, Brazil, have found an evolutionary mechanism that provides insight into how important changes in brain structure of primates can evolve.

That evolution appears to proceed via simple genetic changes that affect the timing of development of brain regions, they report in a paper published May 18 online and in a future print issue of Proceedings of the National Academy of Sciences.

In both monkey species, the specialized eye cells develop in the growing embryo from a single retinal progenitor cell. In their basic design, the eyes of these primates have the capability and necessary architecture to be either nocturnal or diurnal, based on a species’ ecological niche and needs, said Barbara Finlay, Cornell neurobiologist and psychologist, and senior author on the paper.

Finlay and her colleagues compared the developing eyes in fetuses of the two species to better understand how the nocturnal owl monkeys developed retinas with many more rod cells than cones, while capuchin monkeys, which are active during the day (diurnal), developed more cone cells than rods.

“These two species evolved about 15 million years ago from a common ancestor that had a diurnal eye,” said Finlay. “So we believed that comparing how their eyes develop during embryonic growth could help us understand what evolutionary changes would be required to evolve from a diurnal to a nocturnal eye.”

By comparing the timing of retinal cell proliferation in the two species, the researchers found evidence that an extended period of progenitor cell proliferation in the owl monkey gave rise to an increased number of rod and other associated cells that make its eyes adept at night vision; the eyes also evolved to be large, with bigger light-gathering and light-sensing structures needed for nocturnal sight.

“The beauty of the evolutionary mechanism we have identified is that it enables the eye to almost toggle back and forth between a nocturnal and a diurnal structure,” said neurobiologist Michael Dyer of St. Jude’s hospital. “It is an elegant system that gives the eye a lot of flexibility in terms of specialization.”

This research was funded by the National Science Foundation and Brazil’s NSF equivalent, National Counsel of Technological and Scientific Development.

Media Contact

Blaine Friedlander Newswise Science News

More Information:

http://www.cornell.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors