Research reveals how cells rebuild after mitosis

Illustration of nuclear F-actin working to reshape the nucleus and organize the genome. Credit: Claudia Stocker VividBiology

The research, published online in Nature Cell Biology, provides the first evidence that actin polymerisation in the nucleus helps in reshaping the nucleus and reorganising the genome after cell division (mitosis).

In mammals, including humans, the cell nucleus packages and protects the genome. When human cells divide, the nucleus is dissembled to allow segregation of the chromosomes. Once chromosome segregation is complete, new cells need to re-build their nucleus and organise their genome. This process, although essential for life, was poorly understood.

This work is in collaboration with Prof Robert Grosse's Laboratory (University of Marburg, Germany), who revealed the formation of transient and highly dynamic F-actin in the nucleus of daughter cells as they start rebuilding their nucleus after mitosis.

The polymerisation of actin (F-actin) readily occurs in the cytoplasm of cells; where it serves a very important function in controlling cell shape and enabling cells to crawl around. Discovering this transient and dynamic F-actin in nucleus soon after cells division, gave a hint that it may be required for rebuilding the nucleus and re-organising the genome.

Alice Sherrard co-first author of this study and a PhD student with Dr Abderrahmane Kaidi, developed and implemented complementary and interdisciplinary methods to visualise nuclear structure and genome organisation after cells division. In so doing, Alice revealed that disruption of the formation of F-actin results in cells failing to expand their nuclear volume as well as their inability to de-compact their genome. Because of these defects, cells become inefficient in retrieving genetic information encoded in their DNA; thus, they divide slower.

Principal investigator Dr Abderrahmane Kaidi, a specialist in cancer biology at the University of Bristol's School of Cellular and Molecular Medicine, says this discovery advances our fundamental knowledge of genome regulation in space and time, and could have major implications in understanding cancer and degeneration.

“This research highlights the importance of the spatiotemporal control of genome organisation for normal cells function, and we continue to define the principals that regulate these processes and their impact on cancer and degeneration,” said Dr Kaidi.

###

This collaborative study is funded by Human Frontiers Science Program, Medical Research Council and Wellcome Trust; and benefited greatly from the Bristol Wolfson Bioimaging (Biomedical Sciences), and the Bristol Electron Microscopy Unit (Chemistry).

Media Contact

Shona East
shona.east@bristol.ac.uk
44-117-394-0160

 @BristolUni

http://www.bristol.ac.uk 

Media Contact

Shona East EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors