Enzyme promotes fat formation

The enzyme, TPPII, has previously been linked to making people feel hungry, but Jonathan Graff and colleagues now show that it may be even more deeply involved in causing obesity.

The team found that TPPII actually stimulated the formation of fat cells in worms and mammalian cells and that by reducing it, fat stores decreased. Mice with lower levels of TPPII were thinner than their wild type littermates, although their food intake was comparable.

The authors hope that TPPII could be exploited as a drug target to help fight increasing levels of obesity; inhibiting the enzyme would both increase feelings of fullness after eating and decrease build up of fat cells.

Media Contact

Jonathan Graff alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors