Novel insecticidal toxins from bacteria

Speaker Michelle Hares, of the University of Exeter, studies insect-killing nematode worms which have symbiotic bacteria living in their guts. When the worm encounters insect prey, it burrows into the insect’s body and regurgitates the bacteria. These bacteria, called Photorhabdus luminescens, then release toxins directly into the insect’s bloodstream, rapidly killing it. The insect’s flesh then provides food for the bacteria and in turn the bacteria are food for the nematode.

“Once inside an insect, caterpillar or larva, the bacteria release a mixture of toxins which kill the victim”, says Michelle Hares of the University of Exeter’s Cornwall Campus. “The toxins we identified are made up of three different proteins, and all three are needed to kill the insect”. The Cornwall based scientists also discovered that the same genes needed to make these protein toxins are found in the Yersinia pestis bacteria which caused the bubonic plague, and in Yersinia pseudotuberculosis which causes thousands of cases of gastroenteritis today.

When the toxic proteins from both these human pathogenic bacteria were fed to tobacco hornworm caterpillars they had no effect, but when the same proteins were put on living cells from humans both Yersinia bacteria strains killed the cells.

“Our initial interest in this group of toxins, was centered around the hunt for novel insecticides, but our work now suggests they may also play an important role in the evolution of human and mammalian disease”, says Michelle Hares. “Our findings suggest that insecticidal toxin complexes have been adapted by the Yersinia family of bacteria to attack mammalian cells. We are therefore currently investigating exactly how the toxin complexes elicit their response and how they are involved in the evolution of pathogenic disease in Yersinia”.

Media Contact

Lucy Goodchild EurekAlert!

More Information:

http://www.sgm.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors