DNA Replication Behaviour in Complex Organisms May Be Forerunner To Leaps In Genomic Discoveries

Faithful duplication of the genome (the hereditary information that is encoded in genetic materials known as DNA) ensures that daughter cells inherit a complete set of genetic materials identical to parent cells. This duplication occurs in the section of the cell cycle known as the S-phase.

Extensive research on the budding yeast, an organism often used in modern cell biology research, had revealed that the replication process is initiated at hundreds of origins in the S-phase. However, because previous studies focused on the replication timing and initiation sites, but not on the efficiency, it was thought that replication efficiency decreased as the S-phase progressed.

In a paper published in PLoS ONE in August 2007, GIS scientists described how they were able to determine the replication timing and efficiency at the various loci in the genome. Specifically, replication efficiency was found to be low at the beginning of the S-phase, and increased at the later stage of this phase.

GIS Group Leader and the corresponding author of the publication, Dr Liu Jianhua, said, “Our evidence strongly supports the stochastic model for the regulation of DNA replication in high eukaryotes (organisms whose cells are organised into complex structures by internal membranes and a cytoskeleton) such as humans.

We have shown that replication efficiency can be directly determined on a genomic scale. More significantly, our study provides for a novel methodology for the analysis of replication efficiencies at a genomic level in other species, and this is a very important step for the advancement of research in fundamental biology.”

Media Contact

Andrew Hyde alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors