Differences in chemokine receptors and chemokines in erythroderma and Sézary syndrome

Erythroderma can be caused by inflammatory dermatoses or cutaneous T-cell lymphoma. However, even if chemokines and their receptors are involved in the skin-selective lymphocyte recruitment, their role in inflammatory erythroderma is yet unclear.

Flow cytometry was carried out on both circulating and skin-infiltrating T lymphocytes, and serum chemokine levels were evaluated using ELISA techniques. CCR4, CCR5 and CXCR3 were expressed on about 40% of peripheral blood lymphocytes and on the majority of skin-infiltrating lymphocytes in the inflammatory erythroderma patients, whereas the leukemic CD4+CD26- subpopulation in Sézary syndrome was characterized by a high CCR4 expression without a concurrent increase in CCR5 or CXCR3. TARC, MDC and IP-10 serum levels were significantly increased in both erythrodermic and Sézary syndrome patients.

The results confirm that Sézary syndrome is a Th2 disorder with a selective expression of CCR4, whereas inflammatory erythroderma shares an overexpression of both Th1- and Th2-related chemokine receptors, suggesting an activation of different pathways driving reactive lymphocytes to the skin.

Media Contact

Carla Holmes alfa

More Information:

http://www.karger.com

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors