Researchers create mouse lacking key inflammation gene

In a paper published yesterday in The Proceedings of the National Academy of Science (PNAS), researchers from Boston University School of Dental Medicine generated a mouse model exhibiting reduced inflammation.

The Boston University researchers found that the transcription factor LITAF (Lipopolysaccharide [LPS]-Induced TNF-Alpha Factor) controls inflammation through a completely different pathway than the better known and studied NF-kB transcriptional regulator.

Drugs regulating TNF-alpha through the better-known NF-kB pathway such as Remicade, Embrel, and Humira represent a multibillion market. The LITAF transcription factor offers a new approach to treating inflammatory disorders along with other immunological conditions. Researchers are offering this in vivo model for sale to spearhead discovery of drugs against inflammatory disorders such as arthritis and Crohn's disease.

In the study, Boston University researchers created a mouse lacking the gene that encodes for the LITAF protein. They found that several cytokines were induced at lower levels in the LITAF-deficient mice compared with the levels observed in the LITAF-positive control mice. Specifically, the deficient mice were more resistant to LPS-induced lethality.

“The generation of the macrophage-specific LITAF-deficient animals opens new opportunities for assessing the role of LITAF in inflammation in hopes of designing anti-LITAF drugs for major inflammatory diseases,” says Dr. Salomon Amar of Boston University, the lead author of the paper. Amar discovered the LITAF transcription factor in 1999.

Researchers, who have applied to patent the mouse, are now working on whether other molecules work in synergy with LITAF.

Media Contact

Mari Megias EurekAlert!

More Information:

http://www.bu.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors