Fish on acid: Hagfish cope with high levels of CO2

Scientists at the University of British Columbia (Canada) believe the Hagfish’s gruesome method of feeding may cause the stagnant water inside the carcass to become acidic from the build up of CO2 produced by the fish, which could explain why the fish is able to cope with environmental conditions of up to 7% CO2 (350 × that found in normal air). Dan Baker is presenting his latest findings at the Society for Experimental Biology Annual Meeting on Wednesday 5th April [session A4].

“Our results are exciting because it turns out that Hagfish can not only regulate their acid-base balance, but that they have a greater capacity for rapid pH compensation than any marine or fresh water fish studied to date”, explains Baker.

Just as cold-blooded animals have an equal body temperature to their surrounding environment, the Hagfish has the same concentration of salt in its blood as the surrounding seawater. This trait previously led scientists to believe that these fish (known as osmoconformers) could only poorly regulate their pH.

The scientists next want to find the mechanisms by which they do this, and if prolonged exposure to high levels of CO2 causes any long term effects.

Media Contact

Vicky Just alfa

More Information:

http://www.sebiology.org.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors