New ’self-exploding’ microcapsules could take sting out of drug delivery

Belgian chemists have developed “self-exploding” microcapsules that could one day precisely release drugs and vaccines inside the human body weeks or even months after injection. The study, by researchers at Ghent University and the Universit? Catholique de Louvain, is scheduled to appear in the Jan. 9, 2006, print issue of the American Chemical Society’s journal Biomacromolecules.

Unlike some other microcapsules, which release their drug cargo only when exposed to ultrasonic waves or another external trigger, the new system relies on internal mechanisms to do the same job. Each of the new microparticles features a biodegradable gel core that is surrounded by a lipid membrane. As the gel biodegrades, pressure builds up in the membrane. Eventually the microcapsule ruptures, releasing the medication.

The system, the researchers note, could change how some vaccines are administered. Instead of an initial injection followed by a series of boosters, for instance, certain vaccines could be given in a single shot with the “booster” microcapsules timed to rupture at appropriate intervals.

Media Contact

Michael Bernstein EurekAlert!

More Information:

http://www.acs.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors