Strangling tumours in bid to halt cancer

It may be possible to halt cancer in its tracks by blocking a gene critical to building tumour supply lines, according to new research carried out at the University of Queensland, Australia.


Most tumours need a blood supply to grow.

Researchers at the Institute for Molecular Bioscience have found that when new blood vessels form – in developing embryos and in tumours – a gene, known as Sox18, switches on for just 48 hours.

“In adult mice, we have found that interfering with this gene reduces tumour growth by up to 80 percent,” says postdoctoral scientist Dr Neville Young.

Neville is one of thirteen early-career researchers who have presented their work to the public and media for the first time as part of the national program Fresh Science. One of the Fresh Scientists will win a trip to the UK courtesy of British Council to present their work to the Royal Institution.

“A surprisingly large number of people carry microscopic tumours inside their bodies but these cells never develop into disease.

“One of the reasons these cancerous cells do not rage out of control is that they never establish a blood supply to feed them. Those unlucky enough to develop malignant tumours often do so when cancerous cells co-opt the body’s own blood supply.”

Sox18 has an important role to play in helping specialised cells travel to the right position and then form the tubes needed for blood flow.

Dr Young says that targeting blood vessels was not a new concept in the fight against cancer, but that one of the big problems was the side effects of current treatments.

“The novel thing about targeting Sox18 is that it is only turned on in new blood vessels feeding the growing tumour,” he says. “It does not seem to affect any other blood vessels in the body. By attacking only Sox18 we might be able to stop these new vessels forming while leaving the rest of the blood supply alone.”

The next step is to test whether researchers can manufacture a drug for humans that can mimic the observed effects in mice. They also need to design a delivery system to get the drug to the growing blood vessel cells to switch Sox18 off.

The early stages of this research are already underway with preliminary results expected within two years. This is dependent on ongoing funding for this research.

Media Contact

Niall Byrne alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Combining robotics and ChatGPT

TUM professor uses ChatGPT for choreographies with flying robots. Prof. Angela Schoellig has proved that large language models can be used safely in robotics. ChatGPT develops choreographies for up to…

How the Immune System Learns from Harmless Particles

Our lungs are bombarded by all manner of different particles every single day. Whilst some are perfectly safe for us, others—known as pathogens—have the potential to make us ill. The…

Biomarkers identified for successful treatment of bone marrow tumours

CAR T cell therapy has proven effective in treating various haematological cancers. However, not all patients respond equally well to treatment. In a recent clinical study, researchers from the University…

Partners & Sponsors