Inexpensive oxidation catalyst could reduce diesel emissions

It’s not a new material, but a new application of silver hollandite could make a big impact in diesel emissions control. Researchers at Pacific Northwest National Laboratory have developed an inexpensive method of synthesizing nano-sized silver hollandite and have found the material has unique catalytic properties that can completely oxidize nitrogens of oxide, carbon monoxide and hydrocarbons.

These chemical reactions caused by the silver hollandite are key to reducing pollutants in diesel engine emissions.

PNNL researchers have also discovered that silver hollandite is an excellent low-temperature sulfur oxides absorbent. Unlike most oxidation catalysts, which can be easily poisoned by sulfur oxides, silver hollandite maintains its catalytic activity even while it ages by absorbing sulfur oxides.

Media Contact

Susan Bauer EurekAlert!

More Information:

http://www.pnl.gov

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors