Stitching up MRSA with viruses

Nylon strips, beads and hospital stitching thread covered in viruses could be an effective weapon against the hospital acquired superbug, methicillin-resistant Staphylococcus aureus, known as MRSA, according to research presented today (Tuesday, 05 April 2005) at the Society for General Microbiology’s 156th Meeting at Heriot-Watt University, Edinburgh.


Scientists from the University of Strathclyde have developed a method of chemically bonding a type of virus called a bacteriophage, which normally only targets bacteria cells, to nylon products, which it can then use as a base from which to attack the deadly MRSA.

“By immobilising this bacteriophage onto nylon we can prolong its life and usefulness, in different temperature and humidity conditions. Normally it gets targeted by our immune system and cleared away if injected into people, and also dies quickly in dry conditions,” says Dr Janice Spencer from the University of Strathclyde. “We found a phage which is effective against most of the major epidemic MRSA strains. The nylon can be in different forms including strips, sutures and beads.”

The scientists have shown in trials that the immobilised bacteriophage on the thread used for surgical stitches can prevent wounds from becoming infected. Once the phages are bonded to the nylon they are more tolerant of drying out and can remain active for two weeks instead of dying within hours.

The immobilised bacteriophages can also be incorporated into cleaning materials or creams to remove antibiotic resistant bacteria from skin or hospital surfaces, made into wound dressings, or an injectable form to treat MRSA infections.

Media Contact

Faye Jones alfa

More Information:

http://www.sgm.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors