Disoriented T cells cause liver disease

T cells activated in the gut during inflammatory bowel disease can be re-routed to the liver and cause chronic liver disease, according to Eksteen and colleagues in the December 1 issue of The Journal of Experimental Medicine.


A chronic liver disease known as primary sclerosing cholangitis (PSC) has been linked to inflammatory bowel disease (IBD) in the past. But the connection between the two disorders has been unclear, especially as the liver condition often develops years after IBD has resolved or the colon has been surgically removed. Eksteen and colleagues now show that T cells that were activated in the gut – probably during IBD – are found in the livers of patients with PSC, but not in those of patients with other inflammatory liver diseases.

The authors explain this detour by showing that an attractant protein that normally directs T cells into the gut is aberrantly produced in the liver during PSC. T cells expressing the receptor for the protein are thus re-routed to the liver, although the authors do not know what triggers liver cells to make the attractant in the first place. T cells can survive as memory cells for many years after they are activated, and the authors believe this may explain how the liver disease can crop up years after IBD has resolved.

Media Contact

Nikki Henry EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors