UCLA researcher first to solve structure of membrane transport protein

Led by UCLA physiologist H. Ronald Kaback (Sherman Oaks), an international research team’s 12-year mission to solve the structure of an important protein has paid off. Kaback and his colleagues recently captured the three-dimensional structure of lactose permease (LacY), which moves lactose across the cell membrane of E. coli, a common bacterium.

According to Kaback, LacY is a model for a large family of related transport proteins, many of which are associated with human disease.

“We hope that the structure of LacY will offer a useful tool by enabling scientists to understand how other membrane transport proteins work,” said Kaback, a professor of physiology and microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA and a Howard Hughes Medical Institute investigator.

Published in the Aug. 1 edition of Science, the research findings could hold therapeutic implications for diseases such as lactose intolerance, diabetes, stroke and depression, which involve the malfunction of membrane transport proteins.

Crystallographers Jeff Abramson and So Iwata of Imperial College London co-authored the study. The work was partially supported by the National Institutes of Health.

Media Contact

Elaine Schmidt EurekAlert!

More Information:

http://www.ucla.edu/

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors