A green solution to biofuel production

One group of scientists from Texas A&M University have come up with a solution: using plants to make the enzymes. Professor Zivko Nikolov, who leads the Bioseparations Lab, will describe their research on Monday 7th July at the Society for Experimental Biology's Annual Meeting in Marseille [Session P2].

Traditional methods of generating enzymes for biofuel production currently operate at over five times the target cost required to make the fuels financially competitive. By using plants which have been engineered to make the proteins, Professor Nikolov believes that the target can be met. His group, which has expertise in the development of economic processing techniques, have designed processing strategies which allow multiple products to be obtained from each crop, making the whole process more economically viable.

“One of our projects focuses on producing cellulases, enzymes which can break down biomass, in maize seed. By carefully designing the processing chain, from a single crop of maize we can deliver oil that can be turned into biodiesel, cellulose that can be used to make other biofuels, and fibre and protein which can be used as animal feed, as well, of course as the enzymes themselves,” he reveals. “These multiple products offset the outlay on the enzyme purification process, meaning we can make enzymes far more cost-effectively than is achievable using traditional fermentation methods, a result which we can also see in a similar sugarcane processing project.”

In the 1990s there was much interest in using plants to make both industrial enzymes and pharmaceuticals, but in the last five years such industrial enzyme developments have gone out of fashion, largely due to production costs that simply weren't viable, combined with public unease. Now Professor Nikolov's group have brought this technology back into the picture.

“The economic improvements that we have delivered to the processing pathway, combined with a greater public acceptance of transgenic plants, mean that we can now develop the full potential of this technology. This in turn will bring us a step closer to the vital challenge of generating cheap alternative fuels over the coming decades,” he concludes.

Media Contact

Holly Astley EurekAlert!

More Information:

http://www.cam.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors