Want to fly? Don't copy the birds and the bees

No workable flying machines have ever looked particularly similar to nature's fliers, and today there is little comparison between a top of the range military chopper and the humble bumblebee, despite similar flight patterns. In an era in which engineers are increasingly exploiting designs from nature, understanding this paradox is becoming ever more important.

Dr Jim Usherwood, from the Royal Veterinary College, has studied the reasons behind these differences in aerodynamics and concluded that scientists should, in this instance, be more hesitant before imitating nature. He will be presenting his results on Sunday 6th July at the Society for Experimental Biology's Annual Meeting in Marseille [Session A3].

Dr Usherwood believes the reason that flying creatures don't look like man made machines is all to do with the need to flap. “Animals' wings, unlike propellers, have to keep stopping and starting in order produce lift (animals have forgotten to invent propellers, just as they forgot wheels),” he explains. “Think of vigorous waving, or perhaps exuberant rattling of a cocktail shaker – this takes a fair amount of power to overcome inertia. So, the idea is that both wing shape and how wings are used can be understood better if the effort of flapping is remembered, which explains why vultures don't look like gliders, and most winged creatures, from insects to pigeons, fly so inefficiently.”

His research has centred on creatures as diverse as dragonflies and quails. Currently he is investigating the compromise winged creatures face between meeting aerodynamic requirements and overcoming inertia in order to generate lift, by loading wings of racing pigeons with lead fishing weights. He believes that lessons from all of these studies lead to the same conclusion. “My work should act as a reminder to be cautious in copying nature.

There is lots of interest in making MAVs/UAVs (micro/unmanned air vehicles) that flap, which may present all sorts of advantages in terms of maneuverability, speed and so on. However, there is a tendancy to presume that biology is efficient, and I would say that, even at very small sizes, if you want to hover efficiently, be a helicopter not a flapper…”

Media Contact

Holly Astley EurekAlert!

More Information:

http://www.cam.ac.uk

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Recovering phosphorus from sewage sludge ash

Chemical and heat treatment of sewage sludge can recover phosphorus in a process that could help address the problem of diminishing supplies of phosphorus ores. Valuable supplies of phosphorus could…

Efficient, sustainable and cost-effective hybrid energy storage system for modern power grids

EU project HyFlow: Over three years of research, the consortium of the EU project HyFlow has successfully developed a highly efficient, sustainable, and cost-effective hybrid energy storage system (HESS) that…

After 25 years, researchers uncover genetic cause of rare neurological disease

Some families call it a trial of faith. Others just call it a curse. The progressive neurological disease known as spinocerebellar ataxia 4 (SCA4) is a rare condition, but its…

Partners & Sponsors