Another new wrinkle in treating skin aging

Through both the normal aging process and external factors like UV damage, smooth, young skin inevitably becomes coarse and wrinkled. The basis of this wrinkling is that time and damage both lower the production of new collagen while increasing the levels of enzymes called MMPs that chew up existing collagen.

Covering up, slowing down, or even stopping the wrinkling process has become a big business, and as part of this research endeavor, Jin Ho Chung and colleagues tested seven naturally occurring lipids (greasy molecules that play many important biological roles) in their ability to reduce skin aging.

In samples of skin cells, three of the lipids could prevent UV-radiation from both reducing collagen expression and increasing the levels of MMPs; they even increased collagen in undamaged skin cells. Of these three, the molecule phosphatidylserine (PS) seemed the most promising, so the researchers tested it on human skin.

They applied a 2% PS solution to small areas of the buttock in both young and old volunteers; the young skin was subsequently given a dose of UV-radiation to simulate sun damage. In both natural and UV-induced aging, PS treatment prevented collagen reduction and an increase in MMPs when compared to no treatment.

While larger and longer trials are needed to confirm any therapeutic benefits, these initial findings suggest topical PA application might be a simple and natural way to slow down the biological elements underlying wrinkling.

Media Contact

Nick Zagorski EurekAlert!

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Roadmap to close the carbon cycle

A holistic approach to reach net-zero carbon emissions across the economy. A major approach to achieving net-zero carbon emissions relies on converting various parts of the economy, such as personal…

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

New regulator of eating behaviour identified

The rapidly escalating prevalence of overweight and obesity poses a significant medical challenge worldwide. In addition to people’s changing lifestyles, genetic factors also play a key role in the development…

Partners & Sponsors