Counting immune cells on a 'protein printboard'

The researchers have succeeded in neatly lining up proteins on a surface. The process also allows patterns of various types of proteins to be created. The proteins do not bind to the surface directly but via so-called ‘linkers’; these are molecules that organize themselves and create structure. This technology has interesting medical applications, as it allows the creation of a surface with antibodies – proteins that allow antigens to be detected in blood. The presence of antigens provides information about diseases or disease progression. Good detection relies entirely on highly specific binding. The odds of ‘incorrect’ bonds being formed is minimized by this new method.

Cell count

Cells can also be bound to such a ‘protein printboard’ by using the characteristic proteins found on the outside of a cell. This cell adhesion is important in processes like counting immune cells – lymphocytes – to monitor the progression of an HIV infection. Highly specific binding is required to ensure reliable results. Thanks to the regular arrangement made possible by self-organization, researchers also achieve highly specific binding, minimizing the chances of errors. According to the researchers, this opens the door to low cost cell count systems.

The research was performed by the Molecular Nanofabrication (MESA+) and Biophysical Engineering (MESA+ and BMTI) groups. They cooperated with the Agrotechnology & Food Innovations group of the Wageningen University and Research Center.

The article ‘Assembly of Bionanostructures onto ß-Cyclodextrin Molecular
Printboards for Antibody Recognition and Lymphocyte Cell
Counting’ by Manon Ludden, Xiao Li, Jan Greve, Aart van Amerongen,
Maryana Escalante, Vinod Subramaniam, David N. Reinhoudt en Jurriaan Huskens is already available online from the Journal of the American Chemical Society (JACS).

Media Contact

Wiebe van der Veen alfa

More Information:

http://www.utwente.nl/en

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors