Researcher discovers pathway plants use to fight back against pathogens

However, it has not been known what happens between the pathogen attacks and the defense activation, until now. A new MU study revealed a very complex process that explains how plants counter attack pathogens. This discovery could potentially lead to crops with enhanced disease resistance.

“There is a chemical warfare between plants and pathogens,” said Shuqun Zhang, associate professor of biochemistry in the College of Agriculture, Food and Natural Resources and the College of Medicine. “Normally, plants put effort into growth and development. However, when plants sense pathogens, they have to use some of their energy and resources to make secondary metabolites to fight disease. Until now, very little has been known about how this process is regulated.”

According to the study, plants first sense the attack of a pathogen, and then activate defense responses by triggering a complex signaling cascade in plants. One of the defense responses is the induction and accumulation of anti-microbial defense chemicals, known as phytoalexins.

In his study, Zhang found the specific signaling path, known as a mitogen-activated protein kinase (MAPK) cascade, in the plants that ends when the defense chemical camalexin is created. Camalexin is essential for resistance to some plant diseases. Zhang used Arabidopsis, a small flowering plant and the first to have its entire genome sequenced, and Botrytis cinera, a fungal pathogen that causes grey mold disease in a number of plants including grapes and strawberries.

“By understanding at the molecular and cellular levels how plants protect themselves under adverse environmental conditions, such as pathogen attacks, we could eventually improve the disease resistance of crops,” Zhang said.

Media Contact

Jennifer Faddis EurekAlert!

More Information:

http://www.missouri.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors