Protection for stressed-out bacteria identified

The research, published in the October issue of the prestigious international journal Science, details how a huge molecule called a stressosome protects bacterial cells from external stress and danger.

Scientists from the University of Newcastle in Australia, and Newcastle University and Imperial College in the United Kingdom, collaborated on the discovery.

Associate Professor Peter Lewis from the Faculty of Science and Information Technology at the University of Newcastle in Australia said until now, researchers had not fully understood how bacteria responded to stress and potential danger.

“It is important to understand the changes that occur when bacteria are under stress as this is the point at which they are likely to become most infectious.

“The protein molecules that make up the stressosome are found in a very wide range of bacteria. Some of these bacteria cause diseases such as listeriosis that has a 30 per cent mortality rate, and melioidosis that has a mortality rate as high as 90 per cent and is a significant health problem in northern Australia and south-east Asia.

“With bacteria becoming increasingly resistant to antibiotics, understanding how the stress response is controlled could lead to the development of drugs that help prevent bacterial infection from occurring.”

Lead author of the Science paper, Professor Rick Lewis from Newcastle University in the United Kingdom, said the team used groundbreaking techniques to observe the stressosomes. Electron microscopy techniques were developed by Professor Marin van Heel of Imperial College and Associate Professor Peter Lewis developed the fluorescence microscopy imaging techniques.

“We knew that when bacteria were stressed, a warning signal would be sent from the surface to the inside of the cell. The stressosome would then respond by triggering new proteins in the cell to react to the stress.

“Our latest work has revealed the structure and number of stressosomes per cell. This has helped us understand how quickly the stressosomes respond to external stresses and prepare the cell to adapt to changes in its environment and ensure its survival.”

Media Contact

Blythe Hamilton EurekAlert!

More Information:

http://www.newcastle.edu.au

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Webb captures top of iconic horsehead nebula in unprecedented detail

NASA’s James Webb Space Telescope has captured the sharpest infrared images to date of a zoomed-in portion of one of the most distinctive objects in our skies, the Horsehead Nebula….

Cost-effective, high-capacity, and cyclable lithium-ion battery cathodes

Charge-recharge cycling of lithium-superrich iron oxide, a cost-effective and high-capacity cathode for new-generation lithium-ion batteries, can be greatly improved by doping with readily available mineral elements. The energy capacity and…

Novel genetic plant regeneration approach

…without the application of phytohormones. Researchers develop a novel plant regeneration approach by modulating the expression of genes that control plant cell differentiation.  For ages now, plants have been the…

Partners & Sponsors