Genetics of melanoma chemoresistance

While cellular senescence has been thought of as a natural mechanism to combat uncontrolled cell growth, or cancer, recent studies have shown that some cell types express a secretome during senescence that alters the tumor microenvironment and affects the cell's response to chemotherapeutic drugs.

Ohanna et al. confirm that senescent melanoma cells do, in fact, express an inflammatory secretome, and have delineated the genetic pathways involved: Depletion of the MITF transcription factor, or exposure to anti-melanoma drugs, activates the DNA damage response and triggers senescence. Senescent melanoma cells express a PARP-1 and NF-kB—associated secretome, which contains high levels of the chemokine CCL2. CCL2, in turn, leads to a loss of E-cadherin expression and an invasive phenotype.

In fact, Ohanna et al. show that culturing melanoma cells with exogenous CCL2 enhances their survival and invasiveness. This finding suggests that blocking CCL2, or its upstream effectors, may represent a novel therapeutic pathway. As Dr. Bertolotto explains, “Our data disclose a part of the mechanisms contributory to failure of anti-melanoma chemotherapies and we gain valuable insight for the identification of new candidates, namely PARP-1, NF-kB or CCL2, for therapeutic intervention in view to overcome drug resistance.”

Media Contact

Heather Cosel EurekAlert!

More Information:

http://www.cshl.edu

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors