Cellular pathway could provide evidence of how cancer and obesity are linked

University of Alberta researcher Richard Lamb is on his way to understanding the correlation and it's a good example of how the scientific process works.

Lamb is studying a cell pathway in the human body that regulates cell growth. In their most recent work, Lamb and his research group have found that this pathway can be affected by sources not within the cell, specifically amino acid nutrients. Amino acids are the building blocks of tissues and muscle in the human body.

What makes this interesting is that these amino acids are found to be elevated in obese people. That means this signalling pathway, called mTOR, could be hyper-activated by these heightened amino acid nutrients and this could affect how human cells respond to stress and disease among a number of other things. Lamb and his team will now investigate if cancer cells are aided by this potential hyper-activity of the pathway.

Lamb's work is published in the prestigious journal Molecular Cell, and as is normal scientific process, this will elicit calls from researchers around the world who could have other ideas on why this pathway is relevant to disease.

Media Contact

Quinn Phillips EurekAlert!

More Information:

http://www.ualberta.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors