Can't focus? Maybe it's the wrong time of month

Feeling a little sluggish and having trouble concentrating? Hormones might be to blame according to new research from Concordia University published in the journal Brain and Cognition. The study shows that high estrogen levels are associated with an inability to pay attention and learn – the first such paper to report how this impediment can be due to a direct effect of the hormone on mature brain structures.

“Although estrogen is known to play a significant role in learning and memory, there has been no clear consensus on its effect,” says senior author Wayne Brake, an associate professor at Concordia's Center for Studies in Behavioural Neurobiology. “Our findings, using a well-established model of learning called latent inhibition, shows conclusively that high estrogen levels inhibit the cognitive ability in female rodents.”

Human females have high estrogen levels while they are ovulating. These high levels have also been shown to interfere with women's ability to pay attention.

“The similarity between human studies and our findings suggest that we have a good model for human learning,” says first author Matthew Quinlan, a former Concordia doctoral student now a lecturer at California State University San Bernadino. “Rodent research is invaluable to us. We can tease out the real contributors and their respective roles in these systems. It is much more difficult to conduct comparable experiments in humans.”

Latent inhibition: A model of learning

Latent inhibition is observed in many species and is believed to be the important part of learning, which enables individuals to interact successfully in their environment. It is a test of new memory formation.

In the Brake protocol, rats received a pre-exposure phase during which they were repeatedly exposed to a tone, with no consequence. Once they became used to this tone and ignored it, the test dynamics changed and another stimulus was linked to the tone. Rats with low levels of estrogen quickly learned that the tone was associated with the new stimulus whereas those with higher levels of estrogen took longer to form this memory.

“We only observed this effect in adult female rats,” says Brake. “This and our other findings indicate that estrogen directly effects the brain, perhaps by interfering with brain signaling molecules. Our study helps clear up the controversy about the effects of estrogen, the next step is to look at how this occurs.”

Partners in research:
This study was funded by the Natural Sciences and Engineering Research Council of Canada, the Canada Foundation for Innovation and the Fonds de la recherche en santé Québec.
About the study:
“Latent inhibition is affected by phase of estrous cycle in female rats,” published in the journal Brain and Cognition, was authored by Matthew G. Quinlan, Andrew Duncan, Catherine Loiselle, Nicole Graffe and Wayne G. Brake of Concordia University.
On the Web:
Cited Brain and Cognition study: http://tinyurl.com/29fufg7
Concordia University: www.concordia.ca
Concordia Center for Studies in Behavioral Neurobiology: http://csbn.concordia.ca
Media contact:
Sylvain-Jacques Desjardins
Senior advisor, media relations
Concordia University
Phone: 514-848-2424, ext. 5068
Email: s-j.desjardins@concordia.ca
Concordia news: http://now.concordia.ca
Twitter: http://twitter.com/concordianews

Media Contact

Sylvain-Jacques Desjardins EurekAlert!

More Information:

http://www.concordia.ca

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Trotting robots reveal emergence of animal gait transitions

A four-legged robot trained with machine learning by EPFL researchers has learned to avoid falls by spontaneously switching between walking, trotting, and pronking – a milestone for roboticists as well…

Innovation promises to prevent power pole-top fires

Engineers in Australia have found a new way to make power-pole insulators resistant to fire and electrical sparking, promising to prevent dangerous pole-top fires and reduce blackouts. Pole-top fires pose…

Possible alternative to antibiotics produced by bacteria

Antibacterial substance from staphylococci discovered with new mechanism of action against natural competitors. Many bacteria produce substances to gain an advantage over competitors in their highly competitive natural environment. Researchers…

Partners & Sponsors