Quantum cryptography for mobile phones

Currently available quantum cryptography technology is bulky, expensive and limited to fixed physical locations – often server rooms in a bank.

The team at Bristol has shown how it is possible to reduce these bulky and expensive resources so that a client requires only the integration of an optical chip into a mobile handset.

The scheme relies on the breakthrough protocol developed by CQP research fellow Dr Anthony Laing, and colleagues, which allows the robust exchange of quantum information through an unstable environment. The research is published in the latest issue of Physical Review Letters.

Dr Anthony Laing said: “With much attention currently focused on privacy and information security, people are looking to quantum cryptography as a solution since its security is guaranteed by the laws of physics.

Our work here shows that quantum cryptography need not be limited to large corporations, but could be made available to members of the general public. The next step is to take our scheme out of the lab and deploy it in a real communications network.”

The system uses photons – single particles of light – as the information carrier and the scheme relies on the integrated quantum circuits developed at the University of Bristol.

These tiny microchips are crucial for the widespread adoption of secure quantum communications technologies and herald a new dawn for secure mobile banking, online commerce, and information exchange and could shortly lead to the production of the first 'NSA proof' mobile phone.

###

Paper:

Reference frame independent quantum key distribution server with telecom tether for on-chip client
P. Zhang, K. Aungskunsiri, E. Martín-López, J. Wabnig, M. Lobino, R. W. Nock, J. Munns, D. Bonneau, P. Jiang, H. W. Li, A. Laing, J. G. Rarity, A. O. Niskanen, M. G. Thompson, J. L. O'Brien, Physical Review Letters, 2 April 2014.

This work was supported by EPSRC, ERC, QUANTIP, PHORBITEC, and NSQI.

The Centre for Quantum Photonics is a pioneering research group in the area of Quantum Technologies, it has over 70 members and grant portfolio of greater than £20million. Having invented the integrated quantum photonic chip it has already made publically accessible and available online a real quantum computer 'quantum in the Cloud' for the purposes of educating those interested in future quantum computing technologies. http://www.bristol.ac.uk/physics/research/quantum/qcloud/

Media Contact

Hannah Johnson EurekAlert!

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Sea slugs inspire highly stretchable biomedical sensor

USC Viterbi School of Engineering researcher Hangbo Zhao presents findings on highly stretchable and customizable microneedles for application in fields including neuroscience, tissue engineering, and wearable bioelectronics. The revolution in…

Twisting and binding matter waves with photons in a cavity

Precisely measuring the energy states of individual atoms has been a historical challenge for physicists due to atomic recoil. When an atom interacts with a photon, the atom “recoils” in…

Nanotubes, nanoparticles, and antibodies detect tiny amounts of fentanyl

New sensor is six orders of magnitude more sensitive than the next best thing. A research team at Pitt led by Alexander Star, a chemistry professor in the Kenneth P. Dietrich…

Partners & Sponsors