Making memories: Practical quantum computing moves closer to reality

Quantum computing may revolutionize information processing, by providing a means to solve problems too complex for traditional computers, with applications in code breaking, materials science and physics. But figuring out how to engineer such a machine, including vital subsystems like quantum memory, remains elusive.

In the worldwide drive to build a useful quantum computer, the simple-sounding task of effectively preserving quantum information in a quantum memory is a major challenge. The same physics that makes quantum computers potentially powerful also makes them likely to experience errors, even when quantum information is just being stored idly in memory. Keeping quantum information “alive” for long periods, while remaining accessible to the computer, is a key problem.

The Sydney-Dartmouth team's results demonstrate a path to what is considered a holy grail in the research community: storing quantum states with high fidelity for exceptionally long times, even hours according to their calculations. Today, most quantum states survive for tiny fractions of a second.

“Our new approach allows us to simultaneously achieve very low error rates and very long storage times,” said co-senior author Dr. Michael J. Biercuk, director of the Quantum Control Laboratory in the University of Sydney's School of Physics and ARC Centre for Engineered Quantum Systems. “But our work also addresses a vital practical issue – providing small access latencies, enabling on-demand retrieval with only a short time lag to extract stored information.”

The team's new method is based on techniques to build in error resilience at the level of the quantum memory hardware, said Dartmouth Physics Professor Lorenza Viola, a co-senior author who is leading the quantum control theory effort and the Quantum Information Initiative at Dartmouth.

“We've now developed the quantum 'firmware' appropriate to control a practically useful quantum memory,” added Biercuk. “But vitally, we've shown that with our approach a user may guarantee that error never grows beyond a certain level even after very long times, so long as certain constraints are met. The conditions we establish for the memory to function as advertised then inform system engineers how they can construct an efficient and effective quantum memory. Our method even incorporates a wide variety of realistic experimental imperfections.”

The study was supported by the U.S. Army Research Office, National Science Foundation, Intelligence Advanced Research Projects Activity, and ARC Centre for Engineered Quantum Systems.

Broadcast studios Dartmouth has TV and radio studios available for interviews. For more information, visit: http://www.dartmouth.edu/~opa/radio-tv-studios/

Media Contact

John Cramer EurekAlert!

More Information:

http://www.dartmouth.edu

All latest news from the category: Information Technology

Here you can find a summary of innovations in the fields of information and data processing and up-to-date developments on IT equipment and hardware.

This area covers topics such as IT services, IT architectures, IT management and telecommunications.

Back to home

Comments (0)

Write a comment

Newest articles

Detector for continuously monitoring toxic gases

The material could be made as a thin coating to analyze air quality in industrial or home settings over time. Most systems used to detect toxic gases in industrial or…

On the way for an active agent against hepatitis E

In order to infect an organ, viruses need the help of the host cells. “An effective approach is therefore to identify targets in the host that can be manipulated by…

A second chance for new antibiotic agent

Significant attempts 20 years ago… The study focused on the protein peptide deformylase (PDF). Involved in protein maturation processes in cells, PDF is essential for the survival of bacteria. However,…

Partners & Sponsors