Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Why youngsters try to do impossible things


When you see a small child try to fit into or on top of a doll-sized toy, you’re likely to laugh. That’s exactly what three co-investigators of a new study initially did when their own toddlers attempted to fit into a toy car, a miniature room and a doll’s crib.

Based on those personal observations, as well as their research as developmental psychologists interested in how young children understand symbols, the researchers from the University of Virginia, Northwestern University and the University of Illinois at Urbana-Champaign set out to understand why youngsters, who actually know better, make such dramatic mistakes about scale.

Not to worry, moms and dads. The study of 18- to 30-month-old children, published in the May 14 journal Science, found these kinds of errors -- scale errors -- to be common in this age group. Videotapes show many participants in the research seriously trying to slide down miniature slides, squeeze into tiny toy cars and sit in dollhouse chairs.

"Even infants can discriminate the size of objects, so the question is why children sometimes ignore the fact that the objects are so small," said David Uttal, associate professor of psychology at Northwestern and study co-investigator

The provocative part of the answer to that question fits with theories that implicate two neurally and functionally distinct brain systems underlying the use of visual information. One brain area is involved in the visual recognition and categorization of objects ("That’s a chair.") and with planning what to do with them ("I’m going to sit down."). A different area is involved in the perception of object size and in the use of visual information to control actions on objects.

The children’s dramatic failures to use size when interacting with familiar objects may reflect immaturity in the interaction of these two brain systems, said Judy DeLoache, Kenan Professor of Psychology, University of Virginia, and lead author of the study.

"In scale errors, the usual seamless integration between the two systems in the brain momentarily breaks down, and the size of an object is not incorporated into a child’s decision to act on it," she said. "However, once the action begins, children do use size information to adjust their motor behavior."

In deciding to get into the miniature car, children ignore how small it is, but then they accurately open its tiny door and aim their foot directly at its impossibly small opening. "There’s a dissociation between the use of size for planning actions versus controlling those actions."

"One reason this is so interesting is that similar kinds of dissociations occur in various neurological impairments in adults, but they have rarely been studied in healthy young children," said Karl S. Rosengren, professor of psychology at the University of Illinois at Urbana-Champaign and study co-investigator.

The study also suggests a failure of inhibitory control, implicating immaturity of the prefrontal cortex. It is well established that infants and young children have great difficulty inhibiting inappropriate responses. In the case of scale errors, an action appropriate for one object is inappropriately directed to its replica.

The Science study’s implications are important for understanding both the perception-action dissociation in behavior of normally developing young children and the early development of inhibitory control. The precise nature of the breakdowns and factors that influence their occurrence will be the focus of future research.

The study of 54 children, 18 to 30 months old, was conducted at the University of Virginia’s Child Study Center (go to http::// and click on "Current Projects" to find video clips of the children in the study).

The youngsters were given experience in a playroom with three large objects followed by exposure to miniature replicas that were identical except for size. They were observed interacting with an indoor slide they could walk up and slide down, a child-sized chair they could sit in and a car they could get inside and, with their feet, propel around the room.

The children were then taken for a walk, and when they returned to the room, they found the miniature replicas in place of the larger objects. If they did not spontaneously interact with the replicas, the experimenters drew their attention to them without commenting on their size. From videotapes of the sessions, the investigators identified a total of 40 scale errors committed by 25 of the 54 children.

Scale errors were coded whenever a child made a serious attempt to perform on a miniature object the same actions they had done with the large one. Persistence in trying to carry out the impossible action, such as trying repeatedly to squeeze a foot through a tiny car door, was a particularly clear sign of serious intent. Scale errors were clearly distinguishable from pretend play with the objects.

Pat Vaughan Tremmel | EurekAlert!
Further information:

More articles from Social Sciences:

nachricht New population data provide insight on aging, migration
31.08.2016 | International Institute for Applied Systems Analysis (IIASA)

nachricht PRB projects world population rising 33 percent by 2050 to nearly 10 billion
25.08.2016 | Population Reference Bureau

All articles from Social Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>