Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How technology may help shape the future of education

12.07.2005


A novel learning platform that uses a variety of mature technologies to support and expand teaching practices has recently completed testing, proving popular among high school students and teachers.



"The main part of the project used established pedagogical theories, such as the activity theory and the theory of expansive learning in a normal school environment. Of course we used technology to support this," says Dr Costas Davarakis, project manager at Systema Technologies, the coordinating company for the IST-programme funded Lab@Future project. The project used four subjects, science, mathematics, history and environmental awareness, to apply the theory in a variety of situations.

Activity theory in dialogue with social constructivism maintains that people learn better when they participate in tasks themselves, rather than in a lecture situation where they just take notes.


"We introduced the activity model to try and understand the motivation behind the teachers’ work and the students’ learning. We were faced with cultural issues and systemic issues. For example, when students are facing an examination their motivation is entirely different from an educational and leisure situation," says Davarakis.

Expansive learning is an element of activity theory, where students and teachers take advantage of unplanned events to deepen and broaden the educational goal. The team used expansive learning in the laboratory, whether it was a physics laboratory or a history laboratory, such as visiting a historical museum. In expansive learning, the broad outcome of the class is generally enhanced with the unexpected, Davarakis says. In other words, when something goes wrong, the students need to discover why, and the process of learning becomes more active.

For example, in physics a result might not turn out as expected, and the students have to figure out why. In history, students found that, when they visited a museum specialising in Byzantine history, all the exhibits referred to the Roman Empire. Later they discovered that the empire centred on Constantinople, modern day Istanbul, was always called The Roman Empire and that Byzantine is a modern term to differentiate the two phases of Roman history.

While the primary outcome of the project was to test whether these theories apply in the real world, technology was a major element of the project’s execution.

Technologies used to assist these aims included mechatronics, the combination of mechanical and electronic devices, augmented reality, virtual reality and mobile technologies (WiFi, GPRS on PDAs and Tablet PCs). In addition, the team experimented on haptic, or force feedback, devices and virtual reality gloves to enhance the virtual and augmented reality functionality. The team also developed a collaboration system to link students and teachers in a shared learning framework.

"It was really a technology integration project, and we used a lot of innovative yet mature technologies to achieve the pedagogical aims. Even so, during the project we did not focus on providing enough evidence to evaluate technology appropriateness," says Davarakis, though work will continue among the partners to assess this over time.

The platform demonstrated specific experiments for fluid dynamics in science, geometry in mathematics, Byzantine history and archaeology and the effects of pollution for environmental awareness. These topics acted as test cases for teaching and learning in each field, providing the partners with an idea of the different applications performed with a broad range of topics from a typical school curriculum.

The fluid dynamics was available in a mixed reality environment, combining virtual reality with real objects. Here computer models combined with a mechatronics ’table’ that moved fluids in particular ways, so students could compare the computer modelling with a real experiment.

The geometry was available in an augmented reality environment, with geometrical shapes presented in three dimensions, while the history module was based on mobile learning set-up. Students learned about environmental awareness by using a three-dimensional game about pollution.

Technology proved to be more amenable to some subjects. "We found that for science using technology was a lot more straightforward. But in history lessons, using extensive virtual or augmented reality, was more of a gadget or entertainment approach, rather than purely educational. Mobile technologies, on the other hand, were very useful for history but served no real purpose in fluid dynamics material," says Davarakis.

Students were between 11 and 18 years old and the level targeted was secondary and vocational education in seven countries. The project included nine partners in eight countries. The learning experiments were conducted in the local language to ensure student take-up and the evaluation content for all subjects was translated into English.

"Reaction from both students and teachers to the project is very positive, we can’t yet judge in detail how effective the systems are at improving learning and teaching. Analytical effectiveness was not part of the original brief, so some of the partners will continue work to assess effectiveness in the future," says Davarakis.

Currently the project is undergoing final testing and evaluation. "The evaluation is the most difficult part of the project, because we have so many parameters. We had to cope with different pupils, teachers, schools and countries, all with different educational cultures," says Davarakis.

Evaluation was further complicated because there were three different pillars to the project: the pedagogical theory, the technology and the evaluation. These pillars were spread through the four topics so the project has a huge set of results.

The biggest risk with the project is that it could develop as an ’island’, isolated from other developments in enhanced learning using technology, says Davarakis, so the consortium is actively trying to link their results with other work underway in the EU, among national governments and in private enterprise.

The partners also hope to commercialise the results of the project and wish to continue research. "We have developed a technology implementation plan. The consortium is very diverse and includes schools, universities, research institutes, and large and small industrial partners."

"Each views the future from a different perspective. The research institutes want to exploit the data we collected. The technology companies, are trying to capitalise on the technology issues we’ve resolved for specific learning modules," says Davarakis.

And that could mean that educational theory becomes translated into commercial reality.

Tara Morris | alfa
Further information:
http://istresults.cordis.lu/

More articles from Science Education:

nachricht Classroom in Stuttgart with Li-Fi of Fraunhofer HHI opened
03.11.2017 | Fraunhofer-Institut für Nachrichtentechnik, Heinrich-Hertz-Institut, HHI

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>