Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Jersey Institute of Technology pioneers new way to teach engineers

23.11.2004


In Professor Richard Foulds’ freshman design class, students perform angioplasty on pasta, amniocentesis on jelly donuts and surgery on hot dogs.



Foulds, along with other professors at New Jersey Institute of Technology (NJIT), is pioneering a new way to educate engineers. Professors who use the method, called studio learning, demonstrate the fundamentals of engineering not by lecture and recitation but by active, hands-on, experiment-based learning. "Our students love studio learning, which has caused enrollment in the biomedical department to mushroom," says Foulds, PhD, an associate professor of biomedical engineering who shepherded the studio method to NJIT. "You will never see students, in my studio classes, asleep in the back of the room. You’ll see their faces lit up with curiosity, inquiry and an active desire to learn."

Foulds was so happy with the results of implementing the teaching method at NJIT that he, along with two colleagues, published a paper, "Integrated Biomedical Engineering Education Using Studio-Based Learning," in the August 2003 issue of IEEE Engineering in Medicine and Biology Magazine.


And those who benefit most from the new teaching method are the students. "The studio method is a much more intriguing way to learn," said Dennis Den Hollander, a freshman majoring in biomedical engineering. "It is hands-on learning, and it shows you the process engineers go through when they’re designing something. It’s a much more active way to learn. You learn not because a professor tells you, or lectures you, about something. You learn because you find answers by trial and error, by experimenting."

Foulds received three grants to pursue the project. The Whitaker Foundation provided a $30,000 grant to plan the studio concept. The National Science Foundation provided a $100,000 grant to develop studio courses, including the robot surgery class. And the New Jersey Commission on Higher Education funded the purchase of high-tech biomedical equipment used in the two studios.

Studio learning is an alternative to the conventional way of education engineers: a long lecture, followed by a recitation, followed by a lab experiment, says Foulds. Instead, a professor using the studio method starts class with a mini-lecture that touches upon the assigned reading, followed by a studio exercise that is conducted during the class period. Students divide into teams to work on the exercises, which are more open-ended than traditional lab experiments. The professor and the teaching assistant stay with the students in the studio, offering coaching and mentoring. It was first used in architecture schools, Foulds notes, but he adapted and appropriated it for engineering.

One recent afternoon in Foulds’ freshman design class, students worked happily in teams, building surgical robots. Foulds darted from team to team, coaching the students on their robots. The class was alive with the hum of vivid discussions. The mock surgeries, performed on the pasta and other edibles, teach students how to use technology to assist surgeons. The students must first design prototypes of robots that will perform certain tasks, such as reattach the tip of a hot dog, which simulates surgery on an amputated finger. They then build the robots using LEGO Mindstorm kits, which have about 1,000 pieces - with gears, levers, motors and sensors. "Surgical robots will play a critical role in the future of medicine," Foulds says, "allowing surgeons to not only be more precise, but to routinely perform operations from remote locations."

Studio learning promotes interaction among students and professors. In contrast to traditional lectures, studio sessions allow professors to mentor or coach the students. Biomedical engineering is the most interdisciplinary of the engineering fields, since in four years biomed majors must master aspects not only of mechanical, electrical and chemical engineering, but also of physiology, biology and medicine. "The studio classes are ideally suited for interdisciplinary learning," says Foulds, "since the experiments we give them force our students to draw upon many fields."

The studios, also, are equipped with sophisticated equipment. The two studios are wired for the Internet and multimedia equipment. They are furnished with ten PC-based lab stations that serve groups of students. The studios have the equipment used by biomedical engineers, including amplifiers, oscilloscopes, power supplies, function generators and multi-meters.

Oftentimes the studio classes are taught by two professors. Bruno Mantilla, a special lecturer of biomedical engineering, teaches the freshman design class with Foulds. Before coming to NJIT, Mantilla worked for 15 years as a neurosurgeon. He knows, from experience, how engineers can help doctors develop new medical technology; and he knows how to teach students those techniques.

"Children are naturally inquisitive, creative," says Mantilla. "They ask questions. They explore the world with their hands. Yet too often when they get older, and start school, they are told, ’Stop asking questions, stop touching and start learning,’ But that attitude kills learning. In our studio classes we ask our students to be creative, to drop all their pre-conceived notions of what engineering is and to come up with new ideas. It’s really about creativity, which college students naturally possess. It just needs to be tapped. That’s what the studio method does."

Robert Florida | EurekAlert!
Further information:
http://www.njit.edu

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>