Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Jersey Institute of Technology pioneers new way to teach engineers

23.11.2004


In Professor Richard Foulds’ freshman design class, students perform angioplasty on pasta, amniocentesis on jelly donuts and surgery on hot dogs.



Foulds, along with other professors at New Jersey Institute of Technology (NJIT), is pioneering a new way to educate engineers. Professors who use the method, called studio learning, demonstrate the fundamentals of engineering not by lecture and recitation but by active, hands-on, experiment-based learning. "Our students love studio learning, which has caused enrollment in the biomedical department to mushroom," says Foulds, PhD, an associate professor of biomedical engineering who shepherded the studio method to NJIT. "You will never see students, in my studio classes, asleep in the back of the room. You’ll see their faces lit up with curiosity, inquiry and an active desire to learn."

Foulds was so happy with the results of implementing the teaching method at NJIT that he, along with two colleagues, published a paper, "Integrated Biomedical Engineering Education Using Studio-Based Learning," in the August 2003 issue of IEEE Engineering in Medicine and Biology Magazine.


And those who benefit most from the new teaching method are the students. "The studio method is a much more intriguing way to learn," said Dennis Den Hollander, a freshman majoring in biomedical engineering. "It is hands-on learning, and it shows you the process engineers go through when they’re designing something. It’s a much more active way to learn. You learn not because a professor tells you, or lectures you, about something. You learn because you find answers by trial and error, by experimenting."

Foulds received three grants to pursue the project. The Whitaker Foundation provided a $30,000 grant to plan the studio concept. The National Science Foundation provided a $100,000 grant to develop studio courses, including the robot surgery class. And the New Jersey Commission on Higher Education funded the purchase of high-tech biomedical equipment used in the two studios.

Studio learning is an alternative to the conventional way of education engineers: a long lecture, followed by a recitation, followed by a lab experiment, says Foulds. Instead, a professor using the studio method starts class with a mini-lecture that touches upon the assigned reading, followed by a studio exercise that is conducted during the class period. Students divide into teams to work on the exercises, which are more open-ended than traditional lab experiments. The professor and the teaching assistant stay with the students in the studio, offering coaching and mentoring. It was first used in architecture schools, Foulds notes, but he adapted and appropriated it for engineering.

One recent afternoon in Foulds’ freshman design class, students worked happily in teams, building surgical robots. Foulds darted from team to team, coaching the students on their robots. The class was alive with the hum of vivid discussions. The mock surgeries, performed on the pasta and other edibles, teach students how to use technology to assist surgeons. The students must first design prototypes of robots that will perform certain tasks, such as reattach the tip of a hot dog, which simulates surgery on an amputated finger. They then build the robots using LEGO Mindstorm kits, which have about 1,000 pieces - with gears, levers, motors and sensors. "Surgical robots will play a critical role in the future of medicine," Foulds says, "allowing surgeons to not only be more precise, but to routinely perform operations from remote locations."

Studio learning promotes interaction among students and professors. In contrast to traditional lectures, studio sessions allow professors to mentor or coach the students. Biomedical engineering is the most interdisciplinary of the engineering fields, since in four years biomed majors must master aspects not only of mechanical, electrical and chemical engineering, but also of physiology, biology and medicine. "The studio classes are ideally suited for interdisciplinary learning," says Foulds, "since the experiments we give them force our students to draw upon many fields."

The studios, also, are equipped with sophisticated equipment. The two studios are wired for the Internet and multimedia equipment. They are furnished with ten PC-based lab stations that serve groups of students. The studios have the equipment used by biomedical engineers, including amplifiers, oscilloscopes, power supplies, function generators and multi-meters.

Oftentimes the studio classes are taught by two professors. Bruno Mantilla, a special lecturer of biomedical engineering, teaches the freshman design class with Foulds. Before coming to NJIT, Mantilla worked for 15 years as a neurosurgeon. He knows, from experience, how engineers can help doctors develop new medical technology; and he knows how to teach students those techniques.

"Children are naturally inquisitive, creative," says Mantilla. "They ask questions. They explore the world with their hands. Yet too often when they get older, and start school, they are told, ’Stop asking questions, stop touching and start learning,’ But that attitude kills learning. In our studio classes we ask our students to be creative, to drop all their pre-conceived notions of what engineering is and to come up with new ideas. It’s really about creativity, which college students naturally possess. It just needs to be tapped. That’s what the studio method does."

Robert Florida | EurekAlert!
Further information:
http://www.njit.edu

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>