Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New Jersey Institute of Technology pioneers new way to teach engineers


In Professor Richard Foulds’ freshman design class, students perform angioplasty on pasta, amniocentesis on jelly donuts and surgery on hot dogs.

Foulds, along with other professors at New Jersey Institute of Technology (NJIT), is pioneering a new way to educate engineers. Professors who use the method, called studio learning, demonstrate the fundamentals of engineering not by lecture and recitation but by active, hands-on, experiment-based learning. "Our students love studio learning, which has caused enrollment in the biomedical department to mushroom," says Foulds, PhD, an associate professor of biomedical engineering who shepherded the studio method to NJIT. "You will never see students, in my studio classes, asleep in the back of the room. You’ll see their faces lit up with curiosity, inquiry and an active desire to learn."

Foulds was so happy with the results of implementing the teaching method at NJIT that he, along with two colleagues, published a paper, "Integrated Biomedical Engineering Education Using Studio-Based Learning," in the August 2003 issue of IEEE Engineering in Medicine and Biology Magazine.

And those who benefit most from the new teaching method are the students. "The studio method is a much more intriguing way to learn," said Dennis Den Hollander, a freshman majoring in biomedical engineering. "It is hands-on learning, and it shows you the process engineers go through when they’re designing something. It’s a much more active way to learn. You learn not because a professor tells you, or lectures you, about something. You learn because you find answers by trial and error, by experimenting."

Foulds received three grants to pursue the project. The Whitaker Foundation provided a $30,000 grant to plan the studio concept. The National Science Foundation provided a $100,000 grant to develop studio courses, including the robot surgery class. And the New Jersey Commission on Higher Education funded the purchase of high-tech biomedical equipment used in the two studios.

Studio learning is an alternative to the conventional way of education engineers: a long lecture, followed by a recitation, followed by a lab experiment, says Foulds. Instead, a professor using the studio method starts class with a mini-lecture that touches upon the assigned reading, followed by a studio exercise that is conducted during the class period. Students divide into teams to work on the exercises, which are more open-ended than traditional lab experiments. The professor and the teaching assistant stay with the students in the studio, offering coaching and mentoring. It was first used in architecture schools, Foulds notes, but he adapted and appropriated it for engineering.

One recent afternoon in Foulds’ freshman design class, students worked happily in teams, building surgical robots. Foulds darted from team to team, coaching the students on their robots. The class was alive with the hum of vivid discussions. The mock surgeries, performed on the pasta and other edibles, teach students how to use technology to assist surgeons. The students must first design prototypes of robots that will perform certain tasks, such as reattach the tip of a hot dog, which simulates surgery on an amputated finger. They then build the robots using LEGO Mindstorm kits, which have about 1,000 pieces - with gears, levers, motors and sensors. "Surgical robots will play a critical role in the future of medicine," Foulds says, "allowing surgeons to not only be more precise, but to routinely perform operations from remote locations."

Studio learning promotes interaction among students and professors. In contrast to traditional lectures, studio sessions allow professors to mentor or coach the students. Biomedical engineering is the most interdisciplinary of the engineering fields, since in four years biomed majors must master aspects not only of mechanical, electrical and chemical engineering, but also of physiology, biology and medicine. "The studio classes are ideally suited for interdisciplinary learning," says Foulds, "since the experiments we give them force our students to draw upon many fields."

The studios, also, are equipped with sophisticated equipment. The two studios are wired for the Internet and multimedia equipment. They are furnished with ten PC-based lab stations that serve groups of students. The studios have the equipment used by biomedical engineers, including amplifiers, oscilloscopes, power supplies, function generators and multi-meters.

Oftentimes the studio classes are taught by two professors. Bruno Mantilla, a special lecturer of biomedical engineering, teaches the freshman design class with Foulds. Before coming to NJIT, Mantilla worked for 15 years as a neurosurgeon. He knows, from experience, how engineers can help doctors develop new medical technology; and he knows how to teach students those techniques.

"Children are naturally inquisitive, creative," says Mantilla. "They ask questions. They explore the world with their hands. Yet too often when they get older, and start school, they are told, ’Stop asking questions, stop touching and start learning,’ But that attitude kills learning. In our studio classes we ask our students to be creative, to drop all their pre-conceived notions of what engineering is and to come up with new ideas. It’s really about creativity, which college students naturally possess. It just needs to be tapped. That’s what the studio method does."

Robert Florida | EurekAlert!
Further information:

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>