Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team-based e-learning turns a new page

29.02.2008
How do students, who may be located across the globe, collaborate together on team-based project work? European researchers have developed the first online platform that integrates elements of e-learning, social networking and project management to help virtual teams get the most from their practical experience.
How do you like to learn? Do you listen to a lecture and take notes, or would you prefer visual diagrams, pictures and handouts?

Whatever your favoured learning style, the listening and watching eventually comes to an end and it is time to “do”. Project work is one of the best ways to help people put theory into practice, to reinforce and apply new concepts or skills. People also benefit from working in a team, discovering the dynamics of collaboration and teamwork.

“Increasingly, project-centred teaching approaches are being adopted by institutions and enterprises”, says Xuan Zhou, a researcher at the Germany L3S Research Centre. “Teams, rather than individual students, will work on a given project and where support from teachers will often be substituted by interaction among team members (students). These team members may come from different institutions to provide different competencies and approaches.”

Numerous web-based packages are available that allow people to collaborate on and manage projects among remote teams. But these tend to be geared towards commercial project management and are not focused on project work as a learning process, per se.

The COOPER project has built a platform that meets the growing need for project-based e-learning. The platform combines functionality from project management, social networking methods and traditional e-learning systems. It provides a virtual environment in which geographically dispersed teams can talk together, contact tutors, set up project workflows and submit documents. It is especially for the university sector and companies with an international workforce or that have to train foreign customers.

“Most e-learning systems are based on modules, students work through a curriculum,” explains Zhou, a member of the COOPER consortium. “Usually a student has something to learn, and the tutor sets questions or an assignment to test what they have learned. Collaborative learning through teamwork projects need an entire project management system, but with e-learning functionality built in.”

Flexible workflows
The COOPER project realised that its project management tools had to be extremely flexible. “If team members were sitting together round a table they would have to agree on how to work best together,” says Zhou. “Would an individual take overall charge? Who would sign off on which documents, call meetings, or set deadlines? COOPER lets project teams set all these parameters and workflows. The participants’ roles and needs during the project’s life can vary; teams must manage change without requiring the intervention of administrators. The technology lets them easily make these changes.

This flexibility is possible because the COOPER platform uses a technique called Dynamic Process. By integrating Dynamic Process and WebML, a modelling language for web application, it allows the project team to effectively build its own, customised project management system and workflows.

Another important innovation is the integration of several communications systems, including voice over IP (VoIP) and video conferencing. Team members can speak with one another, hold virtual meetings, or leave messages for other team members or tutors.

One of the problems with project-based learning is that its impact is hard to assess. Another arm of the COOPER project has looked at various assessment strategies. The research partners realised that standard question/answer assessments were less suitable. Instead, they are developing tools that follow a system from the Open University of the Netherlands and the Central Institute for Test Development (CITO), which includes long-term assessment schemes.

What's the point?
Sometimes students find teamwork projects vacuous, especially when they know that the final output is deemed less important than the production process. But COOPER gives added value to project results. All the output from projects is analysed and archived to build up a “project memory bank”. This “collective memory” can be used to enhance study programmes and for institutions to provide public information about their curricula and innovative projects.

Three end-user partners are currently testing the COOPER platform. The ALaRI master programme, part of the University of Lugano, and the Alta Scuola Politecnica in Milan are both using COOPER to organise teams of remote students working on real-life problems set by sponsors and external organisations. CoWare, an embedded chip manufacturer, has offices around the globe, and is using the COOPER platform to improve its technical training programmes. Teams of company employees, vendors and engineers in customer companies work through case studies and real-life problems to find solutions and build prototype products.

The project is due to end in March 2008 and the majority of the COOPER platform will be freely downloadable over the web, except some commercial components, such as the visual design tool WebRatio and VoIP, which can be requested under academic license agreement. Project partners will provide consultative services.

Christian Nielsen | alfa
Further information:
http://cordis.europa.eu/ictresults/index.cfm/section/news/tpl/article/BrowsingType/Features/ID/89555

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>