Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ECS plays key role in two new Centres for Doctoral Training

08.12.2008
The Engineering and Physical Sciences Research Council (EPSRC) today (5/12/08) announced a £250M investment in UK science and engineering. The University of Southampton's School of Electronics and Computer Science (ECS) will play a key role in two of the new Centres for Doctoral Training.
The University of Southampton has won funding for three new centres that will
generate the scientists needed for Britain's future, it is announced today by the Engineering and Physical Sciences Research Council (EPSRC) - the UK funding body for science and engineering.

The new Centres for Doctoral Training (CDT) are part of a £250million investment in the future of UK science and technology, announced by the Minister of State for Science and Innovation, Lord Drayson. Forty-four training centres will be established across the UK, generating over 2000 PhD students.

ECS will play a key role in the new CDT for Web Science and the CDT for Complex Systems Simulation, both areas in which ECS already has a growing reputation and influence. The University's third award is for the Industrial Doctorate Centre in Transport and the Environment.

CDT FOR WEB SCIENCE

The new Centre for Doctoral Training in Web Science underlines Southampton’s pre-eminence in this newly emerged research discipline. In 2006 Southampton established the Web Science Research Initiative (WSRI) as a joint interdisciplinary research collaboration with Massachusetts Institute of Technology, and global interest in researching the Web has been growing ever since.

Web Science has an ambitious agenda; it is inherently interdisciplinary – as much about social and organizational behaviour as about the underpinning technology of the World Wide Web. Its research programme targets the Web as a primary focus of attention, adding to our understanding of its architectural principles, its development and growth, its capacity for furthering global knowledge and communication, and its inherent values of trustworthiness, privacy, and respect for social boundaries.

The new CDT in Web Science will be directed by Professor Wendy Hall, one of the Founding Directors of WSRI (along with Professor Tim Berners-Lee, inventor of the Web, Professor Nigel Shadbolt, and Dr Daniel Weitzner) and will train 80 students. University Schools which will participate in the interdisciplinary doctoral research and training in Web Science include Health Sciences, Law, Economics, Sociology, Mathematics, Psychology, and Humanities.

Research in Web Science will enable greater understanding of the complex technical, social, economic and cultural inter-relations that are shaping the Web’s growth and diversification, and which are fundamental to its future productive development.

‘I am delighted that we have been successful with our proposal for a Centre for Doctoral Training in Web Science,’ said Professor Wendy Hall, Director of the Centre. ‘This is a new but rapidly growing interdisciplinary research area that has been pioneered at Southampton and MIT.

‘The incredible support we obtained from industry when preparing the bid is evidence of the need industry has for people with the sort of interdisciplinary skills that we will be training our students to develop. The funding is a real boost for Web Science and we hope the Centre at Southampton will set an example that the rest of the world will follow.’

CDT FOR COMPLEX SYSTEMS SIMULATION

The huge and increasing availability of computational power, raw data and complex systems thinking is now providing unprecedented opportunities for scientists to use computational modelling and simulation to better understand the structure and behaviour of large-scale and complex systems.

These systems present some of the most pressing real-world challenges for society, government and industry – in the environment, health and medicine, finance and economics, population growth, technology and transport.

Understanding them better will drive progress in addressing global problems such as climate change, the need for better drugs and treatments, the shortage of resources, the effectiveness of global communications and the interdependence of the world's economy.

The new Centre for Doctoral Training in Complex Systems Simulation, which will be directed by Dr Seth Bullock of the School of Electronics and Computer Science, and chaired by Professor Jonathan Essex of the School of Chemistry, will provide the fundamental training and research experience necessary to create a future generation of researchers able to use complex systems simulation effectively and rigorously.

Over 50 academics spanning 14 research groups are involved in the new Centre, which will recruit 100 new doctoral research students over the next 5 years.

'We know that UK industry is short of the trained scientists and engineers needed to tackle the complex problems that exist in many sectors, and we have a very strong set of industrial partners already interested in the Centre's work,' said Dr Bullock.

'By providing PhD training in the context of live research challenges within appropriate complex systems, we will ensure that our doctoral graduates are fully equipped to act as research leaders in applying complex systems simulation to this century's most pressing scientific and engineering challenges.'

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>