Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ECS plays key role in two new Centres for Doctoral Training

08.12.2008
The Engineering and Physical Sciences Research Council (EPSRC) today (5/12/08) announced a £250M investment in UK science and engineering. The University of Southampton's School of Electronics and Computer Science (ECS) will play a key role in two of the new Centres for Doctoral Training.
The University of Southampton has won funding for three new centres that will
generate the scientists needed for Britain's future, it is announced today by the Engineering and Physical Sciences Research Council (EPSRC) - the UK funding body for science and engineering.

The new Centres for Doctoral Training (CDT) are part of a £250million investment in the future of UK science and technology, announced by the Minister of State for Science and Innovation, Lord Drayson. Forty-four training centres will be established across the UK, generating over 2000 PhD students.

ECS will play a key role in the new CDT for Web Science and the CDT for Complex Systems Simulation, both areas in which ECS already has a growing reputation and influence. The University's third award is for the Industrial Doctorate Centre in Transport and the Environment.

CDT FOR WEB SCIENCE

The new Centre for Doctoral Training in Web Science underlines Southampton’s pre-eminence in this newly emerged research discipline. In 2006 Southampton established the Web Science Research Initiative (WSRI) as a joint interdisciplinary research collaboration with Massachusetts Institute of Technology, and global interest in researching the Web has been growing ever since.

Web Science has an ambitious agenda; it is inherently interdisciplinary – as much about social and organizational behaviour as about the underpinning technology of the World Wide Web. Its research programme targets the Web as a primary focus of attention, adding to our understanding of its architectural principles, its development and growth, its capacity for furthering global knowledge and communication, and its inherent values of trustworthiness, privacy, and respect for social boundaries.

The new CDT in Web Science will be directed by Professor Wendy Hall, one of the Founding Directors of WSRI (along with Professor Tim Berners-Lee, inventor of the Web, Professor Nigel Shadbolt, and Dr Daniel Weitzner) and will train 80 students. University Schools which will participate in the interdisciplinary doctoral research and training in Web Science include Health Sciences, Law, Economics, Sociology, Mathematics, Psychology, and Humanities.

Research in Web Science will enable greater understanding of the complex technical, social, economic and cultural inter-relations that are shaping the Web’s growth and diversification, and which are fundamental to its future productive development.

‘I am delighted that we have been successful with our proposal for a Centre for Doctoral Training in Web Science,’ said Professor Wendy Hall, Director of the Centre. ‘This is a new but rapidly growing interdisciplinary research area that has been pioneered at Southampton and MIT.

‘The incredible support we obtained from industry when preparing the bid is evidence of the need industry has for people with the sort of interdisciplinary skills that we will be training our students to develop. The funding is a real boost for Web Science and we hope the Centre at Southampton will set an example that the rest of the world will follow.’

CDT FOR COMPLEX SYSTEMS SIMULATION

The huge and increasing availability of computational power, raw data and complex systems thinking is now providing unprecedented opportunities for scientists to use computational modelling and simulation to better understand the structure and behaviour of large-scale and complex systems.

These systems present some of the most pressing real-world challenges for society, government and industry – in the environment, health and medicine, finance and economics, population growth, technology and transport.

Understanding them better will drive progress in addressing global problems such as climate change, the need for better drugs and treatments, the shortage of resources, the effectiveness of global communications and the interdependence of the world's economy.

The new Centre for Doctoral Training in Complex Systems Simulation, which will be directed by Dr Seth Bullock of the School of Electronics and Computer Science, and chaired by Professor Jonathan Essex of the School of Chemistry, will provide the fundamental training and research experience necessary to create a future generation of researchers able to use complex systems simulation effectively and rigorously.

Over 50 academics spanning 14 research groups are involved in the new Centre, which will recruit 100 new doctoral research students over the next 5 years.

'We know that UK industry is short of the trained scientists and engineers needed to tackle the complex problems that exist in many sectors, and we have a very strong set of industrial partners already interested in the Centre's work,' said Dr Bullock.

'By providing PhD training in the context of live research challenges within appropriate complex systems, we will ensure that our doctoral graduates are fully equipped to act as research leaders in applying complex systems simulation to this century's most pressing scientific and engineering challenges.'

Helene Murphy | alfa
Further information:
http://www.soton.ac.uk

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>