Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering Customers’ Hidden Needs

15.07.2015

Siemens Corporate Technology’s Beijing-based Industrial Design Thinking Center (i.DT) is opening the door to identifying users’ hidden needs while generating ideas for innovative products.

Is it possible to communicate and visualize a concept for an innovative computer tomograph with Lego blocks, or to design a rescue device for mine workers with sheets of colored paper?


Many innovations are born in i.DT’s Prototyping Lab.

At the Industrial Design Thinking Center at Siemens Corporate Technology (CT) in Beijing, unusual artifacts such as these are an essential part of a serious product development process. Working with scissors and toys opens up new perspectives and helps Siemens engineers communicate their ideas, and benefit from rapid iterations of testing in the early development stage.

Industrial Design Thinking is the method that has been used by Siemens CT in China since the beginning of 2012 for project topics burdened with so-called “wicked problems”— particularly complex social or cultural challenges. This creative process uses visual and tactile impressions more than other methods do.

“This is greatly appreciated by our Chinese colleagues and users,” says Dr. Bettina Maisch, who built up the i.DT facility and program in the Chinese capital. One strength of Design Thinking is that it helps to identify needs that the user isn’t even conscious of and is not able to articulate.

To identify these “hidden needs,” as Bettina Maisch calls them, participants of role-playing games take on the perspectives of different types of users. The ideas are developed in several fast recursive loops using arts and crafts materials. With every iteration, the ideas become a little more precise.

The process, which can last for several months and include a number of workshops, starts from the definition of the innovation target and ends with a sales pitch that includes what the initial challenge from the user perspective was, how the solution works on the basis of a prototype and what kind of value it delivers to customers.

An Approach that Germinated in Palo Alto

The CT researchers’ role models were the founders of Design Thinking: three IT experts from the U.S., including David Kelley, the founder of innovation company IDEO and now also a professor at Stanford University in Palo Alto. In the early 1990s the three were looking for a method that would include users’ wishes in a very early phase of the innovation process. In 2005 Hasso Plattner, the co-founder of SAP, made a personal donation of 35 million dollars to fund the Hasso Plattner Institute of Design at Stanford. Its goals are to train students with a view to preparing a generation of innovators to tackle complex challenges, foster creative confidence, and push students beyond the boundaries of traditional academic disciplines.

Design-oriented development works very well in academic settings and has also been successfully applied to consumer goods. However, Siemens’ business is in capital goods that generate electricity or enhance the productivity of production plants. Maisch and her team have therefore adapted the IDEO and Stanford to requirements to Siemens’ needs, its people and target markets.

What Do They Really Want? 

“In our approach, by going in the field, observing and talking to the user, we are designing to demonstrate that through deep understanding new opportunity areas can be identified for solutions that provide value to our customers and Siemens,” says Li Zhi Hao, who has led i.DT activities in China since 2015. In order to identify these needs, innovation teams from Corporate Technology and an associated business unit shadow users in their working environments. For example, in Wuhan, China, a project initially called for improvement of an existing intelligent traffic management solution. A team went out in the field and observed and talked to various stakeholders, including pedestrians, taxi drivers and policemen. They provided the policemen with a mobile application that allows them to take over control of traffic lights. “In many projects, our use of Industrial Design Thinking revealed that users actually had very different needs than the business unit had originally thought,” says Li Zhi Hao.

A new device for analyzing urine samples provides another example. Normally, test strips are placed in a device and subjected to chemical analysis. Siemens has an 80 percent share of the world market in this area, but only two percent of the Chinese market, supposedly because potential customers think the price of devices is too high. Siemens Healthcare therefore stipulated that the new device should cost only €50, which would be in line with the prices of competing Chinese products.

However, through field research the team uncovered another business opportunity for urine analyzers. Through interviews with kidney specialists and lab managers they discovered that technicians in central labs in China have to review 70 percent of the results from commercial fully-automated urine sediment analyzers because of the current low accuracy of the analyzers.

In close collaboration with Siemens’ Diagnostics Business Unit they decided to develop a product that would exploit this gap: a microscope into which the urine sample is placed manually that identifies solid materials in the sample through automatic image processing that is faster than an evaluation with the naked eye. This example demonstrates that first hand data from the field and openness to new but promising opportunities can be a valuable direction for new product development at Siemens.

Chinese Thinking

Why has Beijing established itself as the nucleus of Design Thinking at Siemens? “The broad range of user needs in China is an important innovation driver,” explains Dr. Arding Hsu, who was the head of CT China until 2014 and introduced the method three years ago. In addition, Chinese like to think and work in playful and visual ways, tinker with models, and improve them step by step. All of these qualities are very much in tune with Design Thinking.

Now that the method has proved successful in China, Siemens wants to use it to help colleagues in other countries develop more innovative products. Bettina Maisch has been working at Corporate Technology in Munich since the beginning of 2015. There and in Erlangen-Nuremberg, she is building a team for Industrial Design Thinking that will support the business units in Germany. Meanwhile, in Beijing her colleague Li Zhi Hao expects to have the i.DT lab significantly expanded by mid 2015.

It will then have a larger workshop room, several dedicated project rooms, and an advanced machine shop with 3D printer, and a computer numerical control laser cutter, which will take the low resolution prototypes to the next professional level. “Industrial Design Thinking is an important building block in terms of getting us closer to customer,” says Maisch. She’s convinced that this approach will benefit Siemens’ innovation culture. Bernd Müller

Bernd Müller | Siemens - Pictures of the Future

Further reports about: CT Design Design Thinking Industrial Design Siemens Technology product development

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Predicting unpredictability: Information theory offers new way to read ice cores

07.12.2016 | Earth Sciences

Sea ice hit record lows in November

07.12.2016 | Earth Sciences

New material could lead to erasable and rewriteable optical chips

07.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>