Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovering Customers’ Hidden Needs

15.07.2015

Siemens Corporate Technology’s Beijing-based Industrial Design Thinking Center (i.DT) is opening the door to identifying users’ hidden needs while generating ideas for innovative products.

Is it possible to communicate and visualize a concept for an innovative computer tomograph with Lego blocks, or to design a rescue device for mine workers with sheets of colored paper?


Many innovations are born in i.DT’s Prototyping Lab.

At the Industrial Design Thinking Center at Siemens Corporate Technology (CT) in Beijing, unusual artifacts such as these are an essential part of a serious product development process. Working with scissors and toys opens up new perspectives and helps Siemens engineers communicate their ideas, and benefit from rapid iterations of testing in the early development stage.

Industrial Design Thinking is the method that has been used by Siemens CT in China since the beginning of 2012 for project topics burdened with so-called “wicked problems”— particularly complex social or cultural challenges. This creative process uses visual and tactile impressions more than other methods do.

“This is greatly appreciated by our Chinese colleagues and users,” says Dr. Bettina Maisch, who built up the i.DT facility and program in the Chinese capital. One strength of Design Thinking is that it helps to identify needs that the user isn’t even conscious of and is not able to articulate.

To identify these “hidden needs,” as Bettina Maisch calls them, participants of role-playing games take on the perspectives of different types of users. The ideas are developed in several fast recursive loops using arts and crafts materials. With every iteration, the ideas become a little more precise.

The process, which can last for several months and include a number of workshops, starts from the definition of the innovation target and ends with a sales pitch that includes what the initial challenge from the user perspective was, how the solution works on the basis of a prototype and what kind of value it delivers to customers.

An Approach that Germinated in Palo Alto

The CT researchers’ role models were the founders of Design Thinking: three IT experts from the U.S., including David Kelley, the founder of innovation company IDEO and now also a professor at Stanford University in Palo Alto. In the early 1990s the three were looking for a method that would include users’ wishes in a very early phase of the innovation process. In 2005 Hasso Plattner, the co-founder of SAP, made a personal donation of 35 million dollars to fund the Hasso Plattner Institute of Design at Stanford. Its goals are to train students with a view to preparing a generation of innovators to tackle complex challenges, foster creative confidence, and push students beyond the boundaries of traditional academic disciplines.

Design-oriented development works very well in academic settings and has also been successfully applied to consumer goods. However, Siemens’ business is in capital goods that generate electricity or enhance the productivity of production plants. Maisch and her team have therefore adapted the IDEO and Stanford to requirements to Siemens’ needs, its people and target markets.

What Do They Really Want? 

“In our approach, by going in the field, observing and talking to the user, we are designing to demonstrate that through deep understanding new opportunity areas can be identified for solutions that provide value to our customers and Siemens,” says Li Zhi Hao, who has led i.DT activities in China since 2015. In order to identify these needs, innovation teams from Corporate Technology and an associated business unit shadow users in their working environments. For example, in Wuhan, China, a project initially called for improvement of an existing intelligent traffic management solution. A team went out in the field and observed and talked to various stakeholders, including pedestrians, taxi drivers and policemen. They provided the policemen with a mobile application that allows them to take over control of traffic lights. “In many projects, our use of Industrial Design Thinking revealed that users actually had very different needs than the business unit had originally thought,” says Li Zhi Hao.

A new device for analyzing urine samples provides another example. Normally, test strips are placed in a device and subjected to chemical analysis. Siemens has an 80 percent share of the world market in this area, but only two percent of the Chinese market, supposedly because potential customers think the price of devices is too high. Siemens Healthcare therefore stipulated that the new device should cost only €50, which would be in line with the prices of competing Chinese products.

However, through field research the team uncovered another business opportunity for urine analyzers. Through interviews with kidney specialists and lab managers they discovered that technicians in central labs in China have to review 70 percent of the results from commercial fully-automated urine sediment analyzers because of the current low accuracy of the analyzers.

In close collaboration with Siemens’ Diagnostics Business Unit they decided to develop a product that would exploit this gap: a microscope into which the urine sample is placed manually that identifies solid materials in the sample through automatic image processing that is faster than an evaluation with the naked eye. This example demonstrates that first hand data from the field and openness to new but promising opportunities can be a valuable direction for new product development at Siemens.

Chinese Thinking

Why has Beijing established itself as the nucleus of Design Thinking at Siemens? “The broad range of user needs in China is an important innovation driver,” explains Dr. Arding Hsu, who was the head of CT China until 2014 and introduced the method three years ago. In addition, Chinese like to think and work in playful and visual ways, tinker with models, and improve them step by step. All of these qualities are very much in tune with Design Thinking.

Now that the method has proved successful in China, Siemens wants to use it to help colleagues in other countries develop more innovative products. Bettina Maisch has been working at Corporate Technology in Munich since the beginning of 2015. There and in Erlangen-Nuremberg, she is building a team for Industrial Design Thinking that will support the business units in Germany. Meanwhile, in Beijing her colleague Li Zhi Hao expects to have the i.DT lab significantly expanded by mid 2015.

It will then have a larger workshop room, several dedicated project rooms, and an advanced machine shop with 3D printer, and a computer numerical control laser cutter, which will take the low resolution prototypes to the next professional level. “Industrial Design Thinking is an important building block in terms of getting us closer to customer,” says Maisch. She’s convinced that this approach will benefit Siemens’ innovation culture. Bernd Müller

Bernd Müller | Siemens - Pictures of the Future

Further reports about: CT Design Design Thinking Industrial Design Siemens Technology product development

More articles from Science Education:

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>