Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Computer programmes that think like humans

14.02.2012
Intelligence – what does it really mean? In the 1800s, it meant that you were good at memorising things, and today intelligence is measured through IQ tests where the average score for humans is 100.
Researchers at the Department of Philosophy, Linguistics and Theory of Science at the University of Gothenburg, Sweden, have created a computer programme that can score 150.

IQ tests are based on two types of problems: progressive matrices, which test the ability to see patterns in pictures, and number sequences, which test the ability to see patterns in numbers. The most common math computer programmes score below 100 on IQ tests with number sequences.

For Claes Strannegård, researcher at the Department of Philosophy, Linguistics and Theory of Science, this was a reason to try to design ‘smarter’ computer programmes.

‘We’re trying to make programmes that can discover the same types of patterns that humans can see,’ he says.

The research group, which consists of Claes Strannegård, Fredrik Engström, Rahim Nizamani and three students working on their degree projects, believes that number sequence problems are only partly a matter of mathematics – psychology is important too. Strannegård demonstrates this point:
‘1, 2, …, what comes next? Most people would say 3, but it could also be a repeating sequence like 1, 2, 1 or a doubling sequence like 1, 2, 4. Neither of these alternatives is more mathematically correct than the others. What it comes down to is that most people have learned the 1-2-3 pattern.’

The group is therefore using a psychological model of human patterns in their computer programmes. They have integrated a mathematical model that models human-like problem solving. The programme that solves progressive matrices scores IQ 100 and has the unique ability of being able to solve the problems without having access to any response alternatives. The group has improved the programme that specialises in number sequences to the point where it is now able to ace the tests, implying an IQ of at least 150.

‘Our programmes are beating the conventional math programmes because we are combining mathematics and psychology. Our method can potentially be used to identify patterns in any data with a psychological component, such as financial data. But it is not as good at finding patterns in more science-type data, such as weather data, since then the human psyche is not involved,’ says Strannegård.

The research group has recently started collaborating with the Department of Psychology at Stockholm University, with a goal to develop new IQ tests with different levels of difficulty.
‘We have developed a pretty good understanding of how the tests work. Now we want to divide them into different levels of difficulty and design new types of tests, which we can then use to design computer programmes for people who want to practice their problem solving ability,’ says Strannegård.

For more information, please contact: Claes Strannegård
Telephone: +46 (0)31 772 60 36
E-mail: claes.strannegard@ituniv.se

Helena Aaberg | idw
Further information:
http://www.gu.se

Further reports about: IQ test Linguistics Science TV computer programme

More articles from Science Education:

nachricht Starting school boosts development
11.05.2017 | Max-Planck-Institut für Bildungsforschung

nachricht New Master’s programme: University of Kaiserslautern educates experts in quantum technology
15.03.2017 | Technische Universität Kaiserslautern

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>