Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A change in perspective could be all it takes to succeed in school

09.08.2011
Study finds stress boosts performance for confident students, but holds back those with more anxiety

Knowing the right way to handle stress in the classroom and on the sports field can make the difference between success and failure for the millions of students going back to school this fall, new University of Chicago research shows.

"We found that cortisol, a hormone released in response to stress, can either be tied to a student's poor performance on a math test or contribute to success, depending on the frame of mind of the student going into the test," said Sian Beilock, associate professor in psychology at UChicago and one of the nation's leading experts on poor performance by otherwise talented people.

She is the author of "Choke: What the Secrets of the Brain Reveal About Getting it Right When You Have To," released this month in paperback.

In a new paper published in the current issue of the journal "Emotion," Beilock and her colleagues explore the topic of performance failure in math and show, for the first time, that there is a critical connection between working memory, math anxiety and salivary cortisol.

Working memory is the mental reserve that people use to process information and figure out solutions during tests. Math anxiety is fear or apprehension when just thinking about taking a math test. Cortisol is a hormone produced by the adrenal gland and associated with stress-related changes in the body; it is often referred to as the "stress hormone."

Tracking math anxiety in students

Beilock and her team tested 73 undergraduate students to determine their working memory capacities and their level of math anxiety. They also measured cortisol levels (via a saliva sample) before and after a stressful math test. They published the results in a paper titled "Choke or Thrive? The Relation between Salivary Cortisol and Math Performance Depends on Individual Differences in Working Memory and Math Anxiety."

Among students with low working memories, there was little difference in performance related to either cortisol production or math anxiety, the study found. Students with lower working memory exert relatively less mental effort to begin with, researchers found, so taking a stressful test didn't drastically compromise their performance.

Among people with large working memories, those who were typically the most talented, rising cortisol either led to a performance boost or a performance flop — depending on whether they were already anxious about math. For students without a fear of math, the more their cortisol increased during the test, the better they performed — for these confident students, the body's response to stress actually pushed them to greater heights. In contrast, for students with more anxiety about math, surging cortisol was tied to poor performance.

"Under stress, we have a variety of bodily reactions; how we interpret these reactions predicts whether we will choke or thrive under pressure," Beilock said. "If a student interprets their physiological response as a sign they are about to fail, they will. And, when taking a math test, students anxious about math are likely to do this. But the same physiological response can also be linked to success if a student's outlook is positive," she further explained.

In other words, a student's perspective can determine success or failure. Students can change their outlooks by writing about their anxieties before a test and "off-loading" their fears, or simply thinking about a time in the past when they have succeeded, her research has shown.

Taking an exam brings on a different kind of pressure than when a student recites a memorized speech before classmates or an athlete plays before a packed stadium, other research by Beilock and her team demonstrates.

Why people choke under pressure

In another paper published this month in the "Journal of Experimental Psychology," Beilock and her colleagues identify, for the first time, different ways in which people can fumble under pressure. They also suggest remedies. The work, which was based on a series of experiments with several hundred undergraduate students in varying stressful situations, is reported in the paper "Choking Under Pressure: Multiple Routes to Skill Failure."

The experiments explored two theories of why people choke: One holds that people are distracted by worries, and as a result, fail to access their talents; another conversely proposes that stress causes people to pay too much attention to their performance and become self-conscious.

"What we showed in these experiments is that the situation determines what kind of choking develops. Knowing this can help people choose the right strategy to overcome the problem," Beilock said.

In the case of test-taking, good test preparation and a writing exercise can boost performance by reducing anxiety and freeing up working memory. The kind of choking prompted by performing before others calls for a different remedy.

"When you're worried about doing well in a game, or giving a memorized speech in front of others, the best thing to do is to distract yourself with a little tune before you start so you don't become focused on all the details of what you've done so many times before," she said. "On the playing field, thinking too much can be a bad thing," she further explained.

The work in the two papers, as well as research for the Choke, was supported with grants from the National Science Foundation. Co-authors for "Choking Under Pressure" were Marci DeCaro of Vanderbilt University, and Robin Thomas of Miami University and Neil Albert of UChicago. Joining Beilock in writing "Choke or Thrive?" were Andrew Mattarella-Micke, Jill Mateo and Katherine Foster of UChicago, and Megan Kozak of Pace University.

William Harms | EurekAlert!
Further information:
http://www.uchicago.edu

More articles from Science Education:

nachricht Decision-making research in children: Rules of thumb are learned with time
19.10.2016 | Max-Planck-Institut für Bildungsforschung

nachricht Young people discover the "Learning Center"
20.09.2016 | Research Center Pharmaceutical Engineering GmbH

All articles from Science Education >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>