Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching extreme lasers at work

29.11.2010
Frame-by-frame observations of the ionization of argon atoms under extremely bright and energetic illumination could prove a boon to research

Under extremely intense illumination materials may exhibit so-called nonlinear optical properties such as ceasing to absorb light beyond a certain brightness, or becoming highly ionized.

Yasumasa Hikosaka, Mitsuru Nagasono and colleagues at RIKEN and several other Japanese research institutes have now described the details of this ionization process by using very short bursts of bright laser light1. Their finding is relevant to a broad range of pure and applied research, including x-ray imaging of biological molecules, ultrafast optical switches, fusion and astrophysics.

The researchers focused on the behavior of argon atoms, which is easy to handle and well-characterized, under illumination by laser light about one hundred trillion times brighter than the noonday sun, and containing about seven times more energy per photon than the bluest light visible to the human eye. Previous work by other researchers showed that such intense, energetic light removes multiple electrons from target atoms, resulting in highly charged ions. While the mechanism of the ionization process was partially understood from observations of the yields and momenta of these ions, important details were missing.

Hikosaka, Nagasono and colleagues chose to observe the electrons emitted during the ionization process, instead of the ions themselves. Not only do these electrons carry unique information about the ionization process, but they can be measured after each ultra-short laser pulse. Since the laser spectrum and power are constantly fluctuating, the fine details of the ionization process are averaged or ‘smeared’ during a continuous measurement. A shot-by-shot measurement, however, can account for laser fluctuations.

The experiment showed that the dominant ionization pathway of the argon atoms has two steps: first, a single laser photon is absorbed to create singly-ionized argon, and then two more photons are absorbed to create doubly-ionized argon. The researchers also found that the intermediate argon ion states had energy levels, or energy resonances, that induced this pathway.

The research leverages the recent development of free electron lasers, which are uniquely capable of producing very bright, energetic and short pulses of radiation. The work also illustrates that energy resonances are key to multi-photon, multiple ionization processes, a finding that is likely to be relevant to a variety of research programs. Hikosaka says that the research team will continue to focus on the basic science, as well as applications: “Our goal is to develop and leverage a deep understanding of the mechanism and dynamics of non-linear processes in order to manipulate or control these processes and their final products.”

The corresponding author for this highlight is based at the EUV-FEL Experimental Facility Team, RIKEN XFEL Project Head Office

Journal information

Hikosaka, Y., Fushitani, M., Matsuda, A., Tseng, C.-M., Hishikawa, A., Shigemasa, E., Nagasono, M., Tono, K., Togashi, T., Ohashi, H. et al. Multiphoton double ionization of Ar in intense extreme ultraviolet laser fields studied by shot-by-shot photoelectron spectroscopy. Physical Reveiw Letters 105, 133001 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6459
http://www.researchsea.com

More articles from Process Engineering:

nachricht Fraunhofer researchers develop measuring system for ZF factory in Saarbrücken
21.11.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>