Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Watching extreme lasers at work

29.11.2010
Frame-by-frame observations of the ionization of argon atoms under extremely bright and energetic illumination could prove a boon to research

Under extremely intense illumination materials may exhibit so-called nonlinear optical properties such as ceasing to absorb light beyond a certain brightness, or becoming highly ionized.

Yasumasa Hikosaka, Mitsuru Nagasono and colleagues at RIKEN and several other Japanese research institutes have now described the details of this ionization process by using very short bursts of bright laser light1. Their finding is relevant to a broad range of pure and applied research, including x-ray imaging of biological molecules, ultrafast optical switches, fusion and astrophysics.

The researchers focused on the behavior of argon atoms, which is easy to handle and well-characterized, under illumination by laser light about one hundred trillion times brighter than the noonday sun, and containing about seven times more energy per photon than the bluest light visible to the human eye. Previous work by other researchers showed that such intense, energetic light removes multiple electrons from target atoms, resulting in highly charged ions. While the mechanism of the ionization process was partially understood from observations of the yields and momenta of these ions, important details were missing.

Hikosaka, Nagasono and colleagues chose to observe the electrons emitted during the ionization process, instead of the ions themselves. Not only do these electrons carry unique information about the ionization process, but they can be measured after each ultra-short laser pulse. Since the laser spectrum and power are constantly fluctuating, the fine details of the ionization process are averaged or ‘smeared’ during a continuous measurement. A shot-by-shot measurement, however, can account for laser fluctuations.

The experiment showed that the dominant ionization pathway of the argon atoms has two steps: first, a single laser photon is absorbed to create singly-ionized argon, and then two more photons are absorbed to create doubly-ionized argon. The researchers also found that the intermediate argon ion states had energy levels, or energy resonances, that induced this pathway.

The research leverages the recent development of free electron lasers, which are uniquely capable of producing very bright, energetic and short pulses of radiation. The work also illustrates that energy resonances are key to multi-photon, multiple ionization processes, a finding that is likely to be relevant to a variety of research programs. Hikosaka says that the research team will continue to focus on the basic science, as well as applications: “Our goal is to develop and leverage a deep understanding of the mechanism and dynamics of non-linear processes in order to manipulate or control these processes and their final products.”

The corresponding author for this highlight is based at the EUV-FEL Experimental Facility Team, RIKEN XFEL Project Head Office

Journal information

Hikosaka, Y., Fushitani, M., Matsuda, A., Tseng, C.-M., Hishikawa, A., Shigemasa, E., Nagasono, M., Tono, K., Togashi, T., Ohashi, H. et al. Multiphoton double ionization of Ar in intense extreme ultraviolet laser fields studied by shot-by-shot photoelectron spectroscopy. Physical Reveiw Letters 105, 133001 (2010).

gro-pr | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6459
http://www.researchsea.com

More articles from Process Engineering:

nachricht New manufacturing process for SiC power devices opens market to more competition
14.09.2017 | North Carolina State University

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>