Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-short laser pulses for science and industry

08.05.2012
The Fraunhofer Institute for Laser Technology ILT received the Stifterverband‘s Science Award 2012 together with several partners from industry and science.

The prize was awarded during the annual meeting of the Fraunhofer Society on May 8, 2012 in Stuttgart in recognition of its outstanding cross-location, multi-disciplinary collaboration on the laser platform for scaling the power of ultra-short laser pulses.


Adjustment of a picosecond laser.
Picture Source: Fraunhofer Institute for Laser Technology ILT, Aachen, Germany.

Laser technology uses light. Light can be rapidly and precisely deflected, shaped and focused. If we pulse laser light and continuously reduce the pulse duration, the laser tool works even more precisely. A benefit: The material being processed heats up less and less. High-power, ultra-short pulses, then, are the ideal solution for medical applications, in brain surgery for instance, as the cerebral membrane is not damaged.

Or for removing tumor tissue in order to conserve the surrounding tissue and blood vessels. Yet this precision technology is also valued in the processing of materials, glass for instance: Lasers are able to cut narrow speaker ports in smartphone displays. For years, ultra-short laser pulses have been used for the extremely precise and gentle processing of highly-sensitive materials. Until now though, they have often lacked in power. The newly developed laser platform solves this problem with the INNOSLAB booster as its core. Four mirrors surround a laser crystal plate - the slab.

A pump jet enters at the two opposite sides of the slab. The mirrors are repeatedly deflected to allow ultra-short laser pulses to keep passing the slab. Each time they do, energy is transmitted from the pump jet to the laser pulse until the required power is achieved. This platform was developed by the Fraunhofer institute for Laser Technology ILT in Aachen and refined further together with several partners from industry and science: the chair for laser technology at RWTH Aachen University, the Max Planck institute for Quantum Optics MPQ in Munich and the companies Jenoptik AG, EdgeWave and Amphos - the last two being ILT spin-offs. To develop new markets for laser systems with ultra-short wavelengths, the team of developers had to increase the mean laser output of ultra-short pulse beam sources - up to several hundred watts.

Because higher power makes higher production volumes in business and shorter measuring times during scientific experiments possible. Between 2008 and 2011, two joint projects revolved around developing the new beam source: The aim of the PIKOFLAT project, supported by the Federal Ministry for Education and Research BMBF, was to structure pressure tools and embossing dies. The goal was to reduce processing times while significantly increasing quality.

One of the results of this project is the production of embossing rollers that are used to create extremely fine artificial leather surfaces for the automotive industry. In the second joint project, KORONA, Fraunhofer collaborated closely with the Max Planck Institute for Quantum Optics in Garching near Munich and with RWTH Aachen University. The scientists jointly developed a compact beam source whose extremely short-wave light makes it possible to examine nano-structures.

Stifterverband Science Prize
In 1920, representatives from the business world established the Stifterverband at the suggestion of German academies, universities and scientific associations. Its re-foundation after the Second World War is closely linked with the re-foundation of the »Notgemeinschaft der deutschen Wissenschaft« [Emergency Association of German Science] on 11 January 1949. The Stifterverband is still considered to be the mediator between industry and science today. For ten years, the organization has awarded the Fraunhofer Gesellschaft with a prize worth 50,000 euro. The prize is awarded in recognition of outstanding joint applied research projects, on which Fraunhofer institutes work together with businesses and/or other research organizations (article 1). This and the prize „Technik für den Menschen“ [prize for human-centered technology] are awarded in alternate years.
Contacts at the Fraunhofer ILT
If you have any questions regarding this topic, please feel free to contact our experts:
Dipl.Ing Hans-Dieter Hoffmann
Competece Area Manager Lasers and Laser Optics
Phone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Dr. Peter Rußbüldt
Group Manager Ultrafast Lasers
Phone +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer Forschung Kompakt
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>