Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ultra-short laser pulses for science and industry

08.05.2012
The Fraunhofer Institute for Laser Technology ILT received the Stifterverband‘s Science Award 2012 together with several partners from industry and science.

The prize was awarded during the annual meeting of the Fraunhofer Society on May 8, 2012 in Stuttgart in recognition of its outstanding cross-location, multi-disciplinary collaboration on the laser platform for scaling the power of ultra-short laser pulses.


Adjustment of a picosecond laser.
Picture Source: Fraunhofer Institute for Laser Technology ILT, Aachen, Germany.

Laser technology uses light. Light can be rapidly and precisely deflected, shaped and focused. If we pulse laser light and continuously reduce the pulse duration, the laser tool works even more precisely. A benefit: The material being processed heats up less and less. High-power, ultra-short pulses, then, are the ideal solution for medical applications, in brain surgery for instance, as the cerebral membrane is not damaged.

Or for removing tumor tissue in order to conserve the surrounding tissue and blood vessels. Yet this precision technology is also valued in the processing of materials, glass for instance: Lasers are able to cut narrow speaker ports in smartphone displays. For years, ultra-short laser pulses have been used for the extremely precise and gentle processing of highly-sensitive materials. Until now though, they have often lacked in power. The newly developed laser platform solves this problem with the INNOSLAB booster as its core. Four mirrors surround a laser crystal plate - the slab.

A pump jet enters at the two opposite sides of the slab. The mirrors are repeatedly deflected to allow ultra-short laser pulses to keep passing the slab. Each time they do, energy is transmitted from the pump jet to the laser pulse until the required power is achieved. This platform was developed by the Fraunhofer institute for Laser Technology ILT in Aachen and refined further together with several partners from industry and science: the chair for laser technology at RWTH Aachen University, the Max Planck institute for Quantum Optics MPQ in Munich and the companies Jenoptik AG, EdgeWave and Amphos - the last two being ILT spin-offs. To develop new markets for laser systems with ultra-short wavelengths, the team of developers had to increase the mean laser output of ultra-short pulse beam sources - up to several hundred watts.

Because higher power makes higher production volumes in business and shorter measuring times during scientific experiments possible. Between 2008 and 2011, two joint projects revolved around developing the new beam source: The aim of the PIKOFLAT project, supported by the Federal Ministry for Education and Research BMBF, was to structure pressure tools and embossing dies. The goal was to reduce processing times while significantly increasing quality.

One of the results of this project is the production of embossing rollers that are used to create extremely fine artificial leather surfaces for the automotive industry. In the second joint project, KORONA, Fraunhofer collaborated closely with the Max Planck Institute for Quantum Optics in Garching near Munich and with RWTH Aachen University. The scientists jointly developed a compact beam source whose extremely short-wave light makes it possible to examine nano-structures.

Stifterverband Science Prize
In 1920, representatives from the business world established the Stifterverband at the suggestion of German academies, universities and scientific associations. Its re-foundation after the Second World War is closely linked with the re-foundation of the »Notgemeinschaft der deutschen Wissenschaft« [Emergency Association of German Science] on 11 January 1949. The Stifterverband is still considered to be the mediator between industry and science today. For ten years, the organization has awarded the Fraunhofer Gesellschaft with a prize worth 50,000 euro. The prize is awarded in recognition of outstanding joint applied research projects, on which Fraunhofer institutes work together with businesses and/or other research organizations (article 1). This and the prize „Technik für den Menschen“ [prize for human-centered technology] are awarded in alternate years.
Contacts at the Fraunhofer ILT
If you have any questions regarding this topic, please feel free to contact our experts:
Dipl.Ing Hans-Dieter Hoffmann
Competece Area Manager Lasers and Laser Optics
Phone +49 241 8906-206
hansdieter.hoffmann@ilt.fraunhofer.de
Dr. Peter Rußbüldt
Group Manager Ultrafast Lasers
Phone +49 241 8906-303
peter.russbueldt@ilt.fraunhofer.de
Fraunhofer Institute for Laser Technology ILT
Steinbachstraße 15
52074 Aachen
Phone +49 241 8906-0
Fax +49 241 8906-121

Axel Bauer | Fraunhofer Forschung Kompakt
Further information:
http://www.ilt.fraunhofer.de

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>