Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technology expands ability to recycle precious metals

19.08.2011
  • Strategic partnership between Heraeus and PhosphonicS
  • New adsorption technology efficiently reclaims precious metals from low-concentration waste

Precious metals like platinum and rhodium are very valuable, and also very rare. That makes it increasingly important to recycle these precious metals from a wide variety of industrial uses. For example, various catalytic processes in the chemical industry generate large amounts of fluid residue containing low concentrations of precious metal catalysts.


From front to back, this image illustrates the scavenger before loading with precious metal; the red-orange sample with rhodium-loaded scavenger; the remaining scavenger free of precious metals after the precious metal has been separated in the Heraeus recycling process; and the resulting rhodium solution, from which the metal can be directly extracted. (Photo: Heraeus)

The new adsorption process (scavenger technology) being offered in cooperation with the PhosphonicS company in the UK will allow Heraeus to reprocess waste solutions that contain even low concentrations of precious metals. Up until now, it simply was not affordable or profitable to recycle them.

“This strategic partnership is another building block for us to offer our customers a broader range of precious metal recycling,” notes Dr. Joachim Kralik, Head of Chemical Process Development Recycling in the Heraeus Precious Metals Business Unit. Heraeus brings to the partnership its wide-ranging expertise with precious metals and many years of experience in recycling materials containing precious metals—especially from industrial catalysts. This cooperation means that Heraeus customers from the pharmaceutical, industrial, and specialty chemical industries will be able to optimize their processes, both ecologically and economically.

Together with PhosphonicS, Heraeus offers a wide range of a new generation of select and efficient adsorption agents—called scavengers—to remove and recover precious metals from chemical products and waste solutions. Since this can accomplish precious metal output levels for process solutions in the single-digit ppm range (ppm = parts per million), even the slightest amounts of precious metal are retained and reused in the precious metals cycle, saving both resources and the environment.

New adsorption technology works like a “chemical magnet”

The scavenger process allows the efficient recovery, even for waste solutions with extremely low concentrations of precious metals. “With this process, it’s almost like we’re pulling finely distributed precious metal residue from the solution with a ‘chemical magnet.’ The precious metal is bound to the surface of the adsorption medium. We can reprocess that material with its valuable content using wet-chemical processes in a way that yields pure precious metal,” explains Dr. Kralik in simple terms.

In principle, the scavenger process can be used for all precious metals. This technology has already been successfully employed for heavily-diluted organic platinum and rhodium solutions from homogeneous catalytic processes from the chemical industry. Rhodium is principally needed for catalytic converters for the automotive industry, but also finds widespread application in the chemical industry because of its outstanding catalytic properties. Homogeneous catalytic processes using rhodium play an important role in the production of special chemicals (plasticizers, acetic acid, acetic anhydride, and pharmaceutical agents). Platinum catalysts are important for silicone production.

Background: Precious metals – rare and valuable

Mines produce more than 20,000 tons of silver and only around 2,400 tons of gold annually. Platinum metals are even rarer: Altogether, approximately 500 tons of these metals are extracted worldwide. The amount of platinum obtained each year—around 200 tons—would easily fit in a garage. And the 25 tons of rhodium mined annually, indispensible to the automotive and chemical industries, would fit under a desk. Heraeus has developed a special process for recovering the less familiar metals in the platinum family—not only platinum, but also palladium, rhodium, ruthenium, and iridium—that are used in many everyday applications. A closed precious metal cycle conserves resources and helps protect the environment. Also, because of ever-increasing demand for precious metals, mining has not been able to meet demand for some time; this makes recycling absolutely essential.

PhosphonicS Ltd is a spin out company from Queen Mary, University of London. PhosphonicS™ makes a diverse range of “functionalised” materials of which the metal scavengers represent one of the first examples. The metal scavengers are also finding increasing use in pharmaceutical and fine chemical production. Other applications under development include catalysis and membranes.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with 160 years of tradition. Our fields of competence include precious metals, materials, and technologies; sensors; biomaterials; and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.1 billion and precious metal trading revenues of €17.9 billion, as well as more than 12,900 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

For additional information, please contact:
Dr. Jörg Wetterau
Corporate Communications
Head of Technology Media & Innovation
Heraeus Holding GmbH
Heraeusstr. 12-14
63450 Hanau, Germany
Tel. +49 (0) 6181.35-5706
F +49(0) 6181.35-4242
joerg.wetterau@heraeus.com

Dr. Jörg Wetterau | Heraeus Holding GmbH
Further information:
http://www.heraeus.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>