Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New technology expands ability to recycle precious metals

  • Strategic partnership between Heraeus and PhosphonicS
  • New adsorption technology efficiently reclaims precious metals from low-concentration waste

Precious metals like platinum and rhodium are very valuable, and also very rare. That makes it increasingly important to recycle these precious metals from a wide variety of industrial uses. For example, various catalytic processes in the chemical industry generate large amounts of fluid residue containing low concentrations of precious metal catalysts.

From front to back, this image illustrates the scavenger before loading with precious metal; the red-orange sample with rhodium-loaded scavenger; the remaining scavenger free of precious metals after the precious metal has been separated in the Heraeus recycling process; and the resulting rhodium solution, from which the metal can be directly extracted. (Photo: Heraeus)

The new adsorption process (scavenger technology) being offered in cooperation with the PhosphonicS company in the UK will allow Heraeus to reprocess waste solutions that contain even low concentrations of precious metals. Up until now, it simply was not affordable or profitable to recycle them.

“This strategic partnership is another building block for us to offer our customers a broader range of precious metal recycling,” notes Dr. Joachim Kralik, Head of Chemical Process Development Recycling in the Heraeus Precious Metals Business Unit. Heraeus brings to the partnership its wide-ranging expertise with precious metals and many years of experience in recycling materials containing precious metals—especially from industrial catalysts. This cooperation means that Heraeus customers from the pharmaceutical, industrial, and specialty chemical industries will be able to optimize their processes, both ecologically and economically.

Together with PhosphonicS, Heraeus offers a wide range of a new generation of select and efficient adsorption agents—called scavengers—to remove and recover precious metals from chemical products and waste solutions. Since this can accomplish precious metal output levels for process solutions in the single-digit ppm range (ppm = parts per million), even the slightest amounts of precious metal are retained and reused in the precious metals cycle, saving both resources and the environment.

New adsorption technology works like a “chemical magnet”

The scavenger process allows the efficient recovery, even for waste solutions with extremely low concentrations of precious metals. “With this process, it’s almost like we’re pulling finely distributed precious metal residue from the solution with a ‘chemical magnet.’ The precious metal is bound to the surface of the adsorption medium. We can reprocess that material with its valuable content using wet-chemical processes in a way that yields pure precious metal,” explains Dr. Kralik in simple terms.

In principle, the scavenger process can be used for all precious metals. This technology has already been successfully employed for heavily-diluted organic platinum and rhodium solutions from homogeneous catalytic processes from the chemical industry. Rhodium is principally needed for catalytic converters for the automotive industry, but also finds widespread application in the chemical industry because of its outstanding catalytic properties. Homogeneous catalytic processes using rhodium play an important role in the production of special chemicals (plasticizers, acetic acid, acetic anhydride, and pharmaceutical agents). Platinum catalysts are important for silicone production.

Background: Precious metals – rare and valuable

Mines produce more than 20,000 tons of silver and only around 2,400 tons of gold annually. Platinum metals are even rarer: Altogether, approximately 500 tons of these metals are extracted worldwide. The amount of platinum obtained each year—around 200 tons—would easily fit in a garage. And the 25 tons of rhodium mined annually, indispensible to the automotive and chemical industries, would fit under a desk. Heraeus has developed a special process for recovering the less familiar metals in the platinum family—not only platinum, but also palladium, rhodium, ruthenium, and iridium—that are used in many everyday applications. A closed precious metal cycle conserves resources and helps protect the environment. Also, because of ever-increasing demand for precious metals, mining has not been able to meet demand for some time; this makes recycling absolutely essential.

PhosphonicS Ltd is a spin out company from Queen Mary, University of London. PhosphonicS™ makes a diverse range of “functionalised” materials of which the metal scavengers represent one of the first examples. The metal scavengers are also finding increasing use in pharmaceutical and fine chemical production. Other applications under development include catalysis and membranes.

Heraeus, the precious metals and technology group headquartered in Hanau, Germany, is a global, private company with 160 years of tradition. Our fields of competence include precious metals, materials, and technologies; sensors; biomaterials; and medical products, as well as dental products, quartz glass, and specialty light sources. With product revenues of €4.1 billion and precious metal trading revenues of €17.9 billion, as well as more than 12,900 employees in over 120 subsidiaries worldwide, Heraeus holds a leading position in its global markets.

For additional information, please contact:
Dr. Jörg Wetterau
Corporate Communications
Head of Technology Media & Innovation
Heraeus Holding GmbH
Heraeusstr. 12-14
63450 Hanau, Germany
Tel. +49 (0) 6181.35-5706
F +49(0) 6181.35-4242

Dr. Jörg Wetterau | Heraeus Holding GmbH
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>