Standoff sensing enters new realm with dual-laser technique

In a paper published in the Journal of Physics D: Applied Physics, Ali Passian and colleagues present a technique that uses a quantum cascade laser to “pump,” or strike, a target, and another laser to monitor the material's response as a result of temperature-induced changes. That information allows for the rapid identification of chemicals and biological agents.

“With two lasers, one serves as the pump and the other is the probe,” said Passian, a member of ORNL's Measurement Science and Systems Engineering Division. “The novel aspect to our approach is that the second laser extracts information and allows us to do this without resorting to a weak return signal.

“The use of a second laser provides a robust and stable readout approach independent of the pump laser settings.”

While this approach is similar to radar and lidar sensing techniques in that it uses a return signal to carry information of the molecules to be detected, it differs in a number of ways.

“First is the use of photothermal spectroscopy configuration where the pump and probe beams are nearly parallel,” Passian said. “We use probe beam reflectometry as the return signal in standoff applications, thereby minimizing the need for wavelength-dependent expensive infrared components such as cameras, telescopes and detectors.”

This work represents a proof of principle success that Passian and co-author Rubye Farahi said could lead to advances in standoff detectors with potential applications in quality control, forensics, airport security, medicine and the military. In their paper, the researchers also noted that measurements obtained using their technique may set the stage for hyperspectral imaging.

“This would allow us to effectively take slices of chemical images and gain resolution down to individual pixels,” said Passian, who added that this observation is based on cell-by-cell measurements obtained with their variation of photothermal spectroscopy. Hyperspectral imaging provides not only high-resolution chemical information, but topographical information as well.

Other authors are ORNL's Laurene Tetard, a Wigner Fellow, and Thomas Thundat of the University of Alberta. Funding for this research was provided by ORNL's Laboratory Directed Research and Development program.

UT-Battelle manages ORNL for the Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

Media Contact

Ron Walli EurekAlert!

All latest news from the category: Process Engineering

This special field revolves around processes for modifying material properties (milling, cooling), composition (filtration, distillation) and type (oxidation, hydration).

Valuable information is available on a broad range of technologies including material separation, laser processes, measuring techniques and robot engineering in addition to testing methods and coating and materials analysis processes.

Back to home

Comments (0)

Write a comment

Newest articles

Microscopic basis of a new form of quantum magnetism

Not all magnets are the same. When we think of magnetism, we often think of magnets that stick to a refrigerator’s door. For these types of magnets, the electronic interactions…

An epigenome editing toolkit to dissect the mechanisms of gene regulation

A study from the Hackett group at EMBL Rome led to the development of a powerful epigenetic editing technology, which unlocks the ability to precisely program chromatin modifications. Understanding how…

NASA selects UF mission to better track the Earth’s water and ice

NASA has selected a team of University of Florida aerospace engineers to pursue a groundbreaking $12 million mission aimed at improving the way we track changes in Earth’s structures, such…

Partners & Sponsors