Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Standoff sensing enters new realm with dual-laser technique

23.03.2012
Identifying chemicals from a distance could take a step forward with the introduction of a two-laser system being developed at the Department of Energy's Oak Ridge National Laboratory.

In a paper published in the Journal of Physics D: Applied Physics, Ali Passian and colleagues present a technique that uses a quantum cascade laser to "pump," or strike, a target, and another laser to monitor the material's response as a result of temperature-induced changes. That information allows for the rapid identification of chemicals and biological agents.

"With two lasers, one serves as the pump and the other is the probe," said Passian, a member of ORNL's Measurement Science and Systems Engineering Division. "The novel aspect to our approach is that the second laser extracts information and allows us to do this without resorting to a weak return signal.

"The use of a second laser provides a robust and stable readout approach independent of the pump laser settings."

While this approach is similar to radar and lidar sensing techniques in that it uses a return signal to carry information of the molecules to be detected, it differs in a number of ways.

"First is the use of photothermal spectroscopy configuration where the pump and probe beams are nearly parallel," Passian said. "We use probe beam reflectometry as the return signal in standoff applications, thereby minimizing the need for wavelength-dependent expensive infrared components such as cameras, telescopes and detectors."

This work represents a proof of principle success that Passian and co-author Rubye Farahi said could lead to advances in standoff detectors with potential applications in quality control, forensics, airport security, medicine and the military. In their paper, the researchers also noted that measurements obtained using their technique may set the stage for hyperspectral imaging.

"This would allow us to effectively take slices of chemical images and gain resolution down to individual pixels," said Passian, who added that this observation is based on cell-by-cell measurements obtained with their variation of photothermal spectroscopy. Hyperspectral imaging provides not only high-resolution chemical information, but topographical information as well.

Other authors are ORNL's Laurene Tetard, a Wigner Fellow, and Thomas Thundat of the University of Alberta. Funding for this research was provided by ORNL's Laboratory Directed Research and Development program.

UT-Battelle manages ORNL for the Office of Science. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit http://science.energy.gov/

Ron Walli | EurekAlert!
Further information:
http://science.energy.gov/
http://www.ornl.gov

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>