Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New simulation tool enhances competitiveness of paper industry

23.05.2007
Researchers at Mid Sweden University have developed the next generation of simulation tools for optical properties in paper and print. This provides paper producers with greater accuracy and increased understanding while also facilitating communication between the paper and the graphics industries for properties like whiteness and color.

A large number of optical properties in paper and print are determined by measuring the light reflected from an illuminated paper surface. These measurements are interpreted through a model, and the one that has been in use in the paper industry since the 1930s is deficient in some respects.

“We discovered that this is because the light is reflected in different amounts in different directions in an unexpected way. Our new model can explain and cope with this,” says researcher Per Edström.

What made this new discovery possible is his research into numerical methods for effectively solving a class of integro-differential equations. This is a type of problem that has applications in such diverse spheres as the greenhouse effect, medical tomography, and light diffusion in diffuse media.

“The methods Per Edström has developed are not only original. They have also been shown to be robust, accurate, and extremely effective,” says Professor Mårten Gulliksson.

Developmental work has involved collaboration with several companies in the paper industry. There has been a great interest since increased knowledge in this field means greater competitiveness.

“We have already started to use the new model,” says Nils Pauler at M-Real’s Research Center in Örnsköldsvik in Sweden. “We hope it will help us understand different variations in the visual impression made by paper and print.”

“It should be pointed out that Per Edström’s dissertation involves a tremendously broad spectrum of subject areas. From an advanced formulation of the physical problem in mathematical form, which is extremely well rooted in applications, he develops a stable and effective software that can be directly put to use by the industry with great success. This is an impressive achievement that is seldom witnessed in the field of mathematics.”

These are the concluding remarks of Professor Mårten Gulliksson.

The dissertation is titled ”Mathematical Modeling and Numerical Tools for Simulation and Design of Light Scattering in Paper and Print.”

Lars Aronsson | alfa
Further information:
http://www.miun.se

More articles from Process Engineering:

nachricht Etching Microstructures with Lasers
25.10.2016 | Fraunhofer-Institut für Lasertechnik ILT

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Bodyguards in the gut have a chemical weapon

20.01.2017 | Life Sciences

SF State astronomer searches for signs of life on Wolf 1061 exoplanet

20.01.2017 | Physics and Astronomy

Treated carbon pulls radioactive elements from water

20.01.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>