Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More flexibility for lasers

07.05.2007
Until now, industrial lasers have been able to perform only one specific task effectively – they are generally good at either hardening, cutting or welding metal. Moreover, they are often bulky and unwieldy. Researchers from the Fraunhofer Institute for Material and Beam Technology IWS in Dresden will be presenting a real multi-talent at Laser2007 in Munich: a fiber laser system that is capable of hardening, cutting, and even welding if required.

Lasers have become an indispensable tool in many areas of industry. They are used to cut sheet metal for automobiles, harden turbine blades and weld aircraft bodies. These bundles of light energy are fast, precise, and have established a niche for themselves in many different sectors. However, despite their differences, all lasers have one thing in common: They are relatively inflexible. On the one hand, they are usually only good at performing a single task – either hardening, cutting or welding. On the other hand, many industrial lasers take the form of large, unshapely cabinets that can only work on complex three-dimensional components with a great deal of technical effort.

Researchers at the IWS have found a way of making lasers more flexible. To achieve this, they have harnessed a relatively new technology: fiber lasers. For a long time, the use of fiber lasers was confined to applications in the telecommunications sector. Their signals were just strong enough to send tiny light pulses along the glass fibers that carried telephone conversations and Internet messages. In the meantime, however, fiber lasers have caught up with their more powerful cousins. In the last few years, fiber lasers have been developed that can generate light with an output of several kilowatts in fibers with a thickness of only 50 microns. They have the advantage that their fibers are as flexible as a cable, allowing them to get close to components with a complex geometry.

Additionally, fiber lasers generate light with a wavelength of around one micron, a good wavelength for absorption by metals such as steel and aluminum. The energy of the laser easily penetrates the material to be worked. A fiber laser can therefore cut twice as quickly as a CO2 laser with the same output power and a wavelength of 10 microns, until now the laser of choice for cutting applications. Thanks to its pliable fibers, the fiber laser can be employed in a number of materials processing applications and can be easily and flexibly integrated into a production line.

The IWS researchers will be presenting fiber lasers as part of their newly developed laser cutting and hardening system at Laser2007 in Munich (Hall B3, Stand 131) from June 18-21. The device is equipped with a robot arm that can skillfully guide the fiber and the laser head into even the most inaccessible corners of complex components. “Our system is particularly suitable for small and medium sized enterprises,” says Dr. Steffen Bonß, who is responsible for the laser hardening components in the system. “Because conventional laser systems usually perform only one task, smaller companies are often unwilling to invest in them.”

With this new combi-system, companies are able to exploit the laser more flexibly, for either hardening or cutting depending on their current requirements. In pilot projects, the functionality of the system has been extended to include welding. This means that, for the first time, it is worthwhile even for smaller companies to invest in a laser. Without its robot arm, the fiber laser is approximately the same size as a refrigerator and thus barely half the size of a CO2 laser – another factor that facilitates flexible deployment. “A system such as ours is especially interesting for the production of prototypes or small batches,” explains Bonß.

The versatility of the system is largely due to the quality of the laser beam itself. The fibers generate very uniform light and a very small focal spot. The laser can focus the energy more effectively, operating more rapidly and with greater precision. “As far as laser cutting is concerned, CO2 lasers are the most popular with a market share of more than 90 percent,” says Dr. Thomas Himmer, project manager for laser cutting applications at the IWS. “However, they are primarily used for cutting flat sheet metal. It takes considerably more effort to utilize them for cutting more complex geometrical shapes.” This is not the case with the robot-controlled fiber laser: It can reach into any corner of a component. Additionally, thanks to improved focusing capabilities, remotely controlled processing can be carried out at higher speeds and at greater distances from the workpiece.

Moreover, the fiber laser can boast an energy conversion efficiency of 20 percent, compared to the 6 to 10 percent achieved by CO2 lasers.

Of course, there are not only CO2 and fiber lasers. The diode laser has also established a niche for itself, especially for the surface hardening of components – the sharp edges of tools, for example. It generates readily absorbable light with a short wavelength that can easily penetrate metal, as does the fiber laser. For hardening purposes, a wider focal spot is required so that a larger surface area can be processed in a short time. The narrow focus of the IWS fiber laser can be expanded and formed into the appropriate shape with the help of the LASSY beam shaping system, likewise a development of the IWS. Not only the diameter of the beam is important, but also its shape, as the corners of components can be more easily hardened with a rectangular beam than with a round beam. LASSY forms the beam into the required shape, using its integrated camera based heat sensor technology to ensure that the workpiece does not overheat.

For precision laser cutting, the focal spot should be as small as possible. While this is no problem for fiber lasers, diode lasers cannot compete in this respect. The diode laser is relatively inexpensive and still the tool of choice for laser hardening processes, but this is of little use to companies that also need to cut or weld from time to time. In future, fiber lasers will be able to perform all of these tasks. “The first fiber laser systems are already in operation in the automobile industry and are being used by both OEMs and suppliers,” explains Himmer. In collaboration with customers, he and Bonß are developing the optimum laser design: adapting beam parameters to workpieces and integrating laser systems into existing production lines. Thanks to their speed and precision, the use of lasers can often considerably shorten cycle-times, while at the same time reducing energy consumption. The researchers will be demonstrating practical examples at Laser2007 in Munich.

Press Office | alfa
Further information:
http://www.fraunhofer.de

More articles from Process Engineering:

nachricht Intelligent wheelchairs, predictive prostheses
20.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Jelly with memory – predicting the leveling of com-mercial paints
15.12.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>