Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Fighting sound with sound, new modeling technique could quiet aircraft


Newly published research by a Princeton engineer suggests that understanding how air travels across the sunroof of a car may one day make jet engines less noisy.

Clarence Rowley, an assistant professor of mechanical and aerospace engineering, did not actually conduct his experiments on a sunroof. Rather, he and collaborators used computer simulations and subsonic wind tunnels at Princeton and at the U.S. Air Force Academy in Colorado Springs, to experiment with models that resembled the open sunroof of a speeding car.

Rowley showed that his simulations could predict how sunroof air flow would behave under various conditions. Just as important, he figured out how to negate the noise that it produced. Rowley’s findings are published in the January issues of the Annual Reviews of Fluid Mechanics and the Journal of Fluid Mechanics.

This research may ultimately lead to modifications of jet engines to make them quieter as they fly over neighborhoods. The research also has important military applications. For example, it would enable stealth aircraft to fly faster because it would reduce buffeting when doors of a weapons bay are open. And Rowley is currently using insights garnered from this work to help develop ultrasmall, unmanned aircraft that would be useful for surveillance or search-and-rescue missions.

Rowley’s task was not an easy one. To precisely model the air current would have required solving more than 2 million equations. Solving these equations by themselves is not too great a challenge for today’s computers, but manipulating them to figure out how to make the air flow quieter would require far more calculation.

"Basically, it would have been computationally impossible," Rowley said.

So he took an unusual approach. He selectively picked mathematical tools from three different disciplines – dynamical systems, control theory and fluid mechanics – and yoked them together to come up with a computer simulation that, by solving only four equations, could approximate almost identically the answer to the problem that normally would have taken 2 million equations to figure out.

Once he figured out the model, Rowley fought sound with sound.

Rowley focused on the layer of air just above his simulated sunroof, where faster moving air "shears" away from slower moving air. "This shear layer flaps and up and down like a flag in the wind," Rowley said.

Each time this layer of air flaps down and hits the leading edge of the sunroof, it makes what scientists call an acoustic wave (most people just call this noise).

In his computer model and in wind-tunnel experiments with collaborator David Williams of the Illinois Institute of Technology, Rowley placed a speaker at the front end of his sunroof and a microphone at the rear of the roof. The microphone monitored the flapping and fed this information to a controller. The controller, relying on predictions from Rowley’s model, then sent an opposing signal to the speaker, which is not much different than one found on a typical stereo.

"The physical mechanism is actually very simple," Rowley said. "When the flag wants to push up we pull it down; when it wants to pull up we push it down. This is what makes it quiet."

The same principles can be applied to quiet down a jet engine or silence the open bays of a military craft. Rowley does not have immediate plans to promote the technique to the automotive industry to make quieter sunroofs, but he is is applying the knowledge to a new project involving tiny unmanned airplanes.

As part of a joint research project led by Caltech, Rowley is doing computational modeling, as well as building a controller, for aircraft that are the size of a typical model airplane. One day, the researchers hope, these aircraft will be able to fly with the speed of a bird and maneuver themselves with the three-dimensional agility of an insect.

Teresa Riordan | EurekAlert!
Further information:

More articles from Process Engineering:

nachricht Applying electron beams to 3-D objects
23.09.2016 | Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

nachricht New process for cell transfection in high-throughput screening
21.03.2016 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

New method increases energy density in lithium batteries

24.10.2016 | Power and Electrical Engineering

International team discovers novel Alzheimer's disease risk gene among Icelanders

24.10.2016 | Life Sciences

New bacteria groups, and stunning diversity, discovered underground

24.10.2016 | Life Sciences

More VideoLinks >>>