Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid crystal multilayer study promises improvements in manufacturing techniques for LCD’s

13.10.2005


Surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide film observed by surface profiler



In order to successfully fabricate a commercial Liquid Crystal Display, uniform orientation of the liquid crystal (LC) molecules is required. Traditionally this molecular alignment of liquid crystal is achieved by physically or chemically treating the surface. A simple method used to achieve preferred orientation is rubbing but this may produce dust, static charging and mechanical damage which deteriorates the production yield.

One of the more attractive alternatives to rubbing is the generation of a surface anisotropy of an alignment film by photochemical reaction called “photoinduced alignment”. In general, photoinduced alignment is achieved by exposing with both unpolarized and polarized ultraviolet (UV) light on a photoalignment polymer film.


In this study published under AZojomo*, by Thet Naing Oo, Tetsuya Iwata, Munehiro Kimura and Tadashi Akahane from Nagaoka University of Technology and Core System Co. Ltd, investigated of the surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide vertical alignment (PI–VA) film was carried out by means of a novel three–dimensional (3–D) surface profiler.

The photoinduced anisotropy of the partially UV–exposed PI–VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers indicates the orientational distribution of LC molecules on the treated film. Moreover, it was shown that the surface profiler can be used to produce non–contact images with high vertical resolution (~ 0.01 nm).

It is anticipated that this work will be a considerable aid to the manufacturers of liquid crystal displays (LCDs) across the range of LCD production from televisions to computer screens.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>