Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Liquid crystal multilayer study promises improvements in manufacturing techniques for LCD’s

13.10.2005


Surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide film observed by surface profiler



In order to successfully fabricate a commercial Liquid Crystal Display, uniform orientation of the liquid crystal (LC) molecules is required. Traditionally this molecular alignment of liquid crystal is achieved by physically or chemically treating the surface. A simple method used to achieve preferred orientation is rubbing but this may produce dust, static charging and mechanical damage which deteriorates the production yield.

One of the more attractive alternatives to rubbing is the generation of a surface anisotropy of an alignment film by photochemical reaction called “photoinduced alignment”. In general, photoinduced alignment is achieved by exposing with both unpolarized and polarized ultraviolet (UV) light on a photoalignment polymer film.


In this study published under AZojomo*, by Thet Naing Oo, Tetsuya Iwata, Munehiro Kimura and Tadashi Akahane from Nagaoka University of Technology and Core System Co. Ltd, investigated of the surface alignment of liquid crystal multilayers evaporated on a photoaligned polyimide vertical alignment (PI–VA) film was carried out by means of a novel three–dimensional (3–D) surface profiler.

The photoinduced anisotropy of the partially UV–exposed PI–VA film can be visualized as a topological image of LC multilayers. It seems that the topology of LC multilayers indicates the orientational distribution of LC molecules on the treated film. Moreover, it was shown that the surface profiler can be used to produce non–contact images with high vertical resolution (~ 0.01 nm).

It is anticipated that this work will be a considerable aid to the manufacturers of liquid crystal displays (LCDs) across the range of LCD production from televisions to computer screens.

Dr. Ian Birkby | EurekAlert!
Further information:
http://www.azom.com

More articles from Process Engineering:

nachricht Quick, Precise, but not Cold
17.05.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht A laser for divers
03.05.2017 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>