Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Infrared Heat Used to Form and Join Plastics

19.10.2004


An infrared tube furnace for drying plastic coatings or tempering polyurethane pipes after extrusion. (Copyright Heraeus Noblelight 2004)


Heraeus at the plastics industry`s trade fair K in Düsseldorf - Infrared emitters for every application

In the plastics industry today, when extruding foil, forming PET bottles, riveting automotive interior panels, drying the print on yoghurt cups, or sealing tank containers, an increasingly important tool is the unique source of heat known as infrared radiation. Heraeus Noblelight is known for its innovative product development and application of infrared heat systems. The company is a subsidiary of the globally active precious metals and technology group Heraeus Holding GmbH in Hanau, Germany, and is presenting its infrared emitter technology at the plastics industry’s largest trade fair, the K in Düsseldorf, from October 20-27, 2004. These infrared emitters can be specially designed in terms of shape, voltage, and performance to meet the various product and process needs of today’s plastics manufacturers and treatment plants. Heraeus Noblelight is among the few companies specialized in providing customized artificial sources of light for the entire spectrum of industrial applications - from ultraviolet (UV) to infrared (IR) – for use in the fields of research, analysis, engineering, manufacturing, medicine, and environmental protection.

The Carbon Infrared Technology (CIR) developed by Heraeus Noblelight produces a special type of medium wave IR radiation. The carbon emitters are noted for their exceptional efficiency in the drying and treatment processes, and can be quickly powered for energy efficient use in individual thermal processes. CIRâ lamps are ideal for targeted thermal radiation of defined surfaces and for the quick drying of water based coatings.



The benefits to the user are clear

Infrared light (with wavelengths between 800 and 5,000 nanometers) is very intense and energy efficient, so it increases the rate of production while simultaneously reducing manufacturing costs. Further, many of the IR emitter systems can be integrated in existing manufacturing processes with only minimal space requirements. In comparison to conventional techniques, like warm air and contact heating, many of the manufacturing steps can be simplified by the use of non-contact, infrared radiation.

The shape and material of the plastic products determine how an infrared lamp is designed and built. IR emitters can have any imaginable shape: long, straight emitters for large flat surfaces and curved, circular or small emitters for thin edges or very small surface areas. Custom built emitters make thermal processing available even to plastic parts with challenging, complex shapes.

An example of such a processing solution is a circular IR emitter built into a tube furnace that focuses the heat directly onto thin materials passing below it. This enables an efficient thermal processing of continuous flow materials in a typical throughput process. In such ovens, plastic ropes are fixed, wires are sheathed with plastic or tubes are shrunk onto electrical screw connections as insulating sheaths..

Infrared waves create temperatures up to 3,000 °C

The useful wavelengths for IR heat have a significant impact on industrial processes and range between 800 and 5,000 nanometers. The shorter the wavelength, the greater the energy emitted and, in turn, the higher the temperatures produced.

IR thermal emitters that operate in the near infrared (NIR) spectrum use a wavelength of 800 nanometers, produce temperatures up to 3,000 °C, and can radiate a large volume of thermal energy to a very precise point in a very short time. NIR is appropriate for coatings and heat conductive solid materials. Medium IR wave emitters can produce temperatures from 900 to 1,200 °C and have a wavelength of up to 3,000 nanometers. They are ideal for drying thin layers of paint, warming plastic, and drying such materials as paper. A significant advantage in use is that less stress is placed on the base material and the entire system remains cooler due to the rapid heating of water particles by the medium IR waves.

The material characteristics such as thickness and color also influence the choice of the appropriate IR emitter. Generally, the short wave IR energy penetrates to a deeper level while the medium waves transfer more heat energy to the surface. However, no matter how much the individual characteristics of plastics may vary, or what the different treatments they undergo must be, for almost 100 years, Heraeus Noblelight has provided the latest thermal technology and continuously set the standards for this sector.

Dr. Jörg Wetterau | Heraeus Holding GmbH
Further information:
http://www.heraeus.com
http://www.heraeus-noblelight.com

More articles from Process Engineering:

nachricht Dresdner scientists print tomorrow’s world
08.02.2017 | Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS

nachricht New technology for mass-production of complex molded composite components
23.01.2017 | Evonik Industries AG

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>