Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers shine light on new explosives detection method

07.10.2004


A team of University of Florida researchers has invented a way to rapidly detect traces of TNT or other hidden explosives simply by shining a light on any potentially contaminated object, from a speck of dust in the air to the surface of a suitcase. "We have to find explosives quickly, inexpensively and, particularly, reliably," said Rolf Hummel, a UF professor emeritus of materials science and engineering who heads the lab where the method was invented.



The development provides instantaneous results, gives no false positives, can be used remotely and is portable -- attributes he says will make it indispensable at all levels of law enforcement, from local police to homeland security.

The method uses photoluminescence spectroscopy, a technique that casts light on a material and measures the range and intensity of the wavelengths of light the material produces in response. The wavelength of the emitted light varies depending on the chemical structure of the material.


Using photoluminescence to reveal the presence of TNT is similar to how "black light" uses ultraviolet radiation to make white clothes glow, but in this case the black light is a laser, Hummel said. "Once you shine a laser at the sample, the laser then re-emits (it) at specific wavelengths that are different for each material -- it’s a kind of a fingerprint."

TNT’s fingerprint is a sharp, distinct photoluminescent peak at a specific wavelength within the electromagnetic spectrum, the researchers discovered. The electromagnetic spectrum encompasses the entire range of light and sound waves, from long-wavelength radio waves to short-wavelength gamma rays. The peak occurs just outside the longer-wavelength, or red, portion of the spectrum that includes visible light. TNT shares this characteristic peak with other explosive materials, such as plastic explosives and nitroglycerin, but not with safe materials.

The key to this common attribute, Hummel said, lies in the explosives’ chemical makeup -- they all contain at least two "nitro groups," molecules made up of one nitrogen atom bound to two oxygen atoms. The peak is a narrow spectral line and would be easy to miss if you don’t know where in the spectrum to search, Hummel said.

The UF discovery of TNT’s signal was prompted by a request from the U.S. Army Research Office that challenged universities to find a way to make inexpensive, quick and reliable explosive-detection systems. Out of curiosity, one of Hummel’s graduate students tested TNT in the lab’s photoluminescence spectrometer. With its high resolution, the machine scanned across the entire light spectrum and caught the explosive’s elusive signal. "That’s why we detected it the first time," Hummel said.

"This is a very complex phenomenon," said Chuck Schau, a scientist at Raytheon Missile System’s Radiation Technology Laboratory who also was conducting experiments on explosive detection using photoluminescence but initially did not observe the TNT peak discovered by the UF team. Raytheon is now interested in following up on this discovery, he said. That development may include a future for this detection technology that goes beyond airport lines and into uncovering dangerous materials on a much larger scale -- though that technology may be years away.

"If I see a ship approaching, I’d like to know if it’s packed with explosives," Schau said. It’s in the field of remote detection that this is exciting. This really looks like it may give us a leg up on that."

Sample collection for explosives is familiar to anyone who has recently passed through an airport: a swab brushed across an object, such as a suitcase, clothing or even a person, or puffs of air blasted across a filter that can trap tiny amounts of airborne explosives. The advantage of photoluminescence-based explosive detection is that it can be remotely applied, and requires neither time-consuming and expensive machines nor trained dogs, said Hummel, who has applied for a patent on the technique.

"My major aim is that I would like to help and make a contribution towards secure life, airports and transportation," he said. "Just shine a laser on a car, ship or person and see if that specific wavelength comes back -- that’s my goal."

Rolf Hummel | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Process Engineering:

nachricht Diamond watch components
18.06.2018 | Schweizerischer Nationalfonds SNF

nachricht Quick and safe laser joining of steel-aluminum mixed connections
05.06.2018 | Laser Zentrum Hannover e.V.

All articles from Process Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>